Spaces:
Sleeping
Sleeping
| from transformers import pipeline | |
| from scraper import fetch_hazard_tweets | |
| from translate import translate_to_english | |
| from sentiment import classify_emotion_text | |
| from ner import extract_hazard_and_locations | |
| import json | |
| model_name = "joeddav/xlm-roberta-large-xnli" | |
| classifier = pipeline("zero-shot-classification", model=model_name,framework="pt") | |
| def classify_with_model(tweet_text): | |
| """ | |
| Classifies a tweet using a MULTILINGUAL zero-shot learning model. | |
| Returns 1 if hazardous, else 0. | |
| """ | |
| if not tweet_text or not tweet_text.strip(): | |
| return 0 | |
| candidate_labels = ["report of an ocean hazard", "not an ocean hazard"] | |
| result = classifier(tweet_text, candidate_labels) | |
| top_label = result['labels'][0] | |
| top_score = result['scores'][0] | |
| if top_label == "report of an ocean hazard" and top_score > 0.75: | |
| return 1 | |
| return 0 | |
| def classify_tweets(tweets): | |
| """ | |
| Accepts list of tweet dicts with 'text' field. | |
| Pipeline: classify hazard -> if hazardous, translate -> sentiment -> NER. | |
| Returns enriched dicts. | |
| """ | |
| classified = [] | |
| for t in tweets: | |
| text = t.get('text', '') | |
| hazardous = classify_with_model(text) | |
| item = dict(t) | |
| item['hazardous'] = hazardous | |
| translated = translate_to_english(text) | |
| item['translated_text'] = translated | |
| if hazardous == 1: | |
| sentiment = classify_emotion_text(translated) | |
| item['sentiment'] = sentiment | |
| ner_info = extract_hazard_and_locations(translated) | |
| item['ner'] = ner_info | |
| classified.append(item) | |
| return classified | |
| if __name__ == "__main__": | |
| tweets = fetch_hazard_tweets(limit=20) | |
| classified = classify_tweets(tweets) | |
| print(json.dumps(classified, indent=2, ensure_ascii=False)) |