pravaah / classifier.py
Prathamesh Sutar
Initial deployment of Pravaah Ocean Hazard Detection System
49e67a8
raw
history blame
1.81 kB
from transformers import pipeline
from scraper import fetch_hazard_tweets
from translate import translate_to_english
from sentiment import classify_emotion_text
from ner import extract_hazard_and_locations
import json
model_name = "joeddav/xlm-roberta-large-xnli"
classifier = pipeline("zero-shot-classification", model=model_name,framework="pt")
def classify_with_model(tweet_text):
"""
Classifies a tweet using a MULTILINGUAL zero-shot learning model.
Returns 1 if hazardous, else 0.
"""
if not tweet_text or not tweet_text.strip():
return 0
candidate_labels = ["report of an ocean hazard", "not an ocean hazard"]
result = classifier(tweet_text, candidate_labels)
top_label = result['labels'][0]
top_score = result['scores'][0]
if top_label == "report of an ocean hazard" and top_score > 0.75:
return 1
return 0
def classify_tweets(tweets):
"""
Accepts list of tweet dicts with 'text' field.
Pipeline: classify hazard -> if hazardous, translate -> sentiment -> NER.
Returns enriched dicts.
"""
classified = []
for t in tweets:
text = t.get('text', '')
hazardous = classify_with_model(text)
item = dict(t)
item['hazardous'] = hazardous
translated = translate_to_english(text)
item['translated_text'] = translated
if hazardous == 1:
sentiment = classify_emotion_text(translated)
item['sentiment'] = sentiment
ner_info = extract_hazard_and_locations(translated)
item['ner'] = ner_info
classified.append(item)
return classified
if __name__ == "__main__":
tweets = fetch_hazard_tweets(limit=20)
classified = classify_tweets(tweets)
print(json.dumps(classified, indent=2, ensure_ascii=False))