Spaces:
Running
Running
| import os | |
| import torch | |
| from transformers import AutoTokenizer, AutoModelForSequenceClassification | |
| import requests | |
| import numpy as np | |
| import re | |
| device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
| # --------------------------- | |
| # ModernBERT Models (SzegedAI Workflow) | |
| # --------------------------- | |
| model1_path = "modernbert.bin" | |
| model2_path = "https://huggingface.co/mihalykiss/modernbert_2/resolve/main/Model_groups_3class_seed12" | |
| model3_path = "https://huggingface.co/mihalykiss/modernbert_2/resolve/main/Model_groups_3class_seed22" | |
| tokenizer_modernbert = AutoTokenizer.from_pretrained("answerdotai/ModernBERT-base") | |
| model_1 = AutoModelForSequenceClassification.from_pretrained("answerdotai/ModernBERT-base", num_labels=41) | |
| model_1.load_state_dict(torch.load(model1_path, map_location=device)) | |
| model_1.to(device).eval() | |
| model_2 = AutoModelForSequenceClassification.from_pretrained("answerdotai/ModernBERT-base", num_labels=41) | |
| model_2.load_state_dict(torch.hub.load_state_dict_from_url(model2_path, map_location=device)) | |
| model_2.to(device).eval() | |
| model_3 = AutoModelForSequenceClassification.from_pretrained("answerdotai/ModernBERT-base", num_labels=41) | |
| model_3.load_state_dict(torch.hub.load_state_dict_from_url(model3_path, map_location=device)) | |
| model_3.to(device).eval() | |
| label_mapping = { | |
| 0: '13B', 1: '30B', 2: '65B', 3: '7B', 4: 'GLM130B', 5: 'bloom_7b', | |
| 6: 'bloomz', 7: 'cohere', 8: 'davinci', 9: 'dolly', 10: 'dolly-v2-12b', | |
| 11: 'flan_t5_base', 12: 'flan_t5_large', 13: 'flan_t5_small', | |
| 14: 'flan_t5_xl', 15: 'flan_t5_xxl', 16: 'gemma-7b-it', 17: 'gemma2-9b-it', | |
| 18: 'gpt-3.5-turbo', 19: 'gpt-35', 20: 'gpt4', 21: 'gpt4o', | |
| 22: 'gpt_j', 23: 'gpt_neox', 24: 'human', 25: 'llama3-70b', 26: 'llama3-8b', | |
| 27: 'mixtral-8x7b', 28: 'opt_1.3b', 29: 'opt_125m', 30: 'opt_13b', | |
| 31: 'opt_2.7b', 32: 'opt_30b', 33: 'opt_350m', 34: 'opt_6.7b', | |
| 35: 'opt_iml_30b', 36: 'opt_iml_max_1.3b', 37: 't0_11b', 38: 't0_3b', | |
| 39: 'text-davinci-002', 40: 'text-davinci-003' | |
| } | |
| def clean_text(text: str) -> str: | |
| text = re.sub(r"\s{2,}", " ", text) | |
| text = re.sub(r"\s+([,.;:?!])", r"\1", text) | |
| return text | |
| def classify_szegedai(text: str): | |
| """ModernBERT ensemble detector (replaces SzegedAI Space call).""" | |
| cleaned_text = clean_text(text) | |
| if not cleaned_text.strip(): | |
| return {"error": "Empty text"} | |
| inputs = tokenizer_modernbert(cleaned_text, return_tensors="pt", truncation=True, padding=True).to(device) | |
| with torch.no_grad(): | |
| logits_1 = model_1(**inputs).logits | |
| logits_2 = model_2(**inputs).logits | |
| logits_3 = model_3(**inputs).logits | |
| probs = (torch.softmax(logits_1, dim=1) + | |
| torch.softmax(logits_2, dim=1) + | |
| torch.softmax(logits_3, dim=1)) / 3 | |
| probs = probs[0] | |
| ai_probs = probs.clone() | |
| ai_probs[24] = 0 # "human" label index | |
| ai_total_prob = ai_probs.sum().item() * 100 | |
| human_prob = 100 - ai_total_prob | |
| ai_index = torch.argmax(ai_probs).item() | |
| ai_model = label_mapping[ai_index] | |
| return { | |
| "Human Probability": round(human_prob, 2), | |
| "AI Probability": round(ai_total_prob, 2), | |
| "Identified LLM": ai_model | |
| } | |
| # --------------------------- | |
| # Your Other Detectors | |
| # --------------------------- | |
| MODELS = { | |
| "DeBERTa Detector": "distilbert-base-uncased-finetuned-sst-2-english", | |
| "MonkeyDAnh": "MonkeyDAnh/my-awesome-ai-detector-roberta-base-v4-human-vs-machine-finetune", | |
| "Andreas122001": "andreas122001/roberta-academic-detector", | |
| } | |
| def run_hf_model(model_id, text): | |
| try: | |
| tokenizer = AutoTokenizer.from_pretrained(model_id) | |
| model = AutoModelForSequenceClassification.from_pretrained(model_id) | |
| inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True) | |
| with torch.no_grad(): | |
| logits = model(**inputs).logits | |
| probs = torch.softmax(logits, dim=-1).cpu().numpy()[0] | |
| return {"Human Probability": float(probs[0]*100), "AI Probability": float(probs[1]*100)} | |
| except Exception as e: | |
| return {"error": str(e)} | |
| # --------------------------- | |
| # Main Detector | |
| # --------------------------- | |
| def detect_text(text): | |
| results = {} | |
| # HuggingFace transformer models | |
| for name, model_id in MODELS.items(): | |
| results[name] = run_hf_model(model_id, text) | |
| # SzegedAI ModernBERT ensemble | |
| results["SzegedAI Detector"] = classify_szegedai(text) | |
| # Final verdict | |
| ai_probs = [] | |
| for v in results.values(): | |
| if "AI Probability" in v: | |
| ai_probs.append(v["AI Probability"]) | |
| avg_ai = np.mean(ai_probs) if ai_probs else 0 | |
| if avg_ai > 80: | |
| verdict = "Likely AI-generated" | |
| elif avg_ai > 40: | |
| verdict = "Possibly human-written with AI assistance" | |
| else: | |
| verdict = "Likely human-written" | |
| results["Final Score"] = {"Verdict": verdict} | |
| return results | |
| if __name__ == "__main__": | |
| sample = "This is a test sentence written by AI or human." | |
| print(detect_text(sample)) |