Spaces:
Running
Running
Update ai_text_detector_valid_final.py
Browse files- ai_text_detector_valid_final.py +52 -58
ai_text_detector_valid_final.py
CHANGED
|
@@ -28,40 +28,21 @@ model_3 = AutoModelForSequenceClassification.from_pretrained("answerdotai/Modern
|
|
| 28 |
model_3.load_state_dict(torch.hub.load_state_dict_from_url(model3_path, map_location=device))
|
| 29 |
model_3.to(device).eval()
|
| 30 |
|
| 31 |
-
label_mapping = {
|
| 32 |
-
0: '13B', 1: '30B', 2: '65B', 3: '7B', 4: 'GLM130B', 5: 'bloom_7b',
|
| 33 |
-
6: 'bloomz', 7: 'cohere', 8: 'davinci', 9: 'dolly', 10: 'dolly-v2-12b',
|
| 34 |
-
11: 'flan_t5_base', 12: 'flan_t5_large', 13: 'flan_t5_small',
|
| 35 |
-
14: 'flan_t5_xl', 15: 'flan_t5_xxl', 16: 'gemma-7b-it', 17: 'gemma2-9b-it',
|
| 36 |
-
18: 'gpt-3.5-turbo', 19: 'gpt-35', 20: 'gpt4', 21: 'gpt4o',
|
| 37 |
-
22: 'gpt_j', 23: 'gpt_neox', 24: 'human', 25: 'llama3-70b', 26: 'llama3-8b',
|
| 38 |
-
27: 'mixtral-8x7b', 28: 'opt_1.3b', 29: 'opt_125m', 30: 'opt_13b',
|
| 39 |
-
31: 'opt_2.7b', 32: 'opt_30b', 33: 'opt_350m', 34: 'opt_6.7b',
|
| 40 |
-
35: 'opt_iml_30b', 36: 'opt_iml_max_1.3b', 37: 't0_11b', 38: 't0_3b',
|
| 41 |
-
39: 'text-davinci-002', 40: 'text-davinci-003'
|
| 42 |
-
}
|
| 43 |
-
|
| 44 |
-
# def clean_text(text: str) -> str:
|
| 45 |
-
# text = re.sub(r"\s{2,}", " ", text)
|
| 46 |
-
# text = re.sub(r"\s+([,.;:?!])", r"\1", text)
|
| 47 |
-
# return text
|
| 48 |
-
|
| 49 |
|
|
|
|
|
|
|
|
|
|
| 50 |
def clean_text(text: str) -> str:
|
| 51 |
-
# Normalize non-breaking spaces to normal space
|
| 52 |
text = text.replace("\xa0", " ").replace("\u200b", "")
|
| 53 |
-
|
| 54 |
-
# Collapse multiple spaces
|
| 55 |
text = re.sub(r"\s{2,}", " ", text)
|
| 56 |
-
|
| 57 |
-
# Remove space before punctuation
|
| 58 |
text = re.sub(r"\s+([,.;:?!])", r"\1", text)
|
| 59 |
-
|
| 60 |
-
# Trim leading/trailing spaces
|
| 61 |
return text.strip()
|
| 62 |
|
|
|
|
|
|
|
|
|
|
| 63 |
def classify_szegedai(text: str):
|
| 64 |
-
"""ModernBERT ensemble detector (replaces SzegedAI Space call)."""
|
| 65 |
cleaned_text = clean_text(text)
|
| 66 |
if not cleaned_text.strip():
|
| 67 |
return {"error": "Empty text"}
|
|
@@ -79,7 +60,7 @@ def classify_szegedai(text: str):
|
|
| 79 |
|
| 80 |
probs = probs[0]
|
| 81 |
ai_probs = probs.clone()
|
| 82 |
-
ai_probs[24] = 0 # "human"
|
| 83 |
ai_total_prob = ai_probs.sum().item() * 100
|
| 84 |
human_prob = 100 - ai_total_prob
|
| 85 |
|
|
@@ -93,10 +74,9 @@ def classify_szegedai(text: str):
|
|
| 93 |
}
|
| 94 |
|
| 95 |
# ---------------------------
|
| 96 |
-
#
|
| 97 |
# ---------------------------
|
| 98 |
MODELS = {
|
| 99 |
-
# "DeBERTa Detector": "distilbert-base-uncased-finetuned-sst-2-english",
|
| 100 |
"MonkeyDAnh": "MonkeyDAnh/my-awesome-ai-detector-roberta-base-v4-human-vs-machine-finetune",
|
| 101 |
# "Andreas122001": "andreas122001/roberta-academic-detector",
|
| 102 |
}
|
|
@@ -114,10 +94,9 @@ def run_hf_model(model_id, text):
|
|
| 114 |
return {"error": str(e)}
|
| 115 |
|
| 116 |
# ---------------------------
|
| 117 |
-
#
|
| 118 |
# ---------------------------
|
| 119 |
def verdict(ai_prob):
|
| 120 |
-
"""Return a human-readable verdict based on AI probability"""
|
| 121 |
if ai_prob < 20:
|
| 122 |
return "Most likely human-written."
|
| 123 |
elif 20 <= ai_prob < 40:
|
|
@@ -126,46 +105,61 @@ def verdict(ai_prob):
|
|
| 126 |
return "Unclear – could be either human or AI-assisted."
|
| 127 |
elif 60 <= ai_prob < 80:
|
| 128 |
return "Possibly AI-generated, or a human using AI assistance."
|
| 129 |
-
else:
|
| 130 |
return "Likely AI-generated or heavily AI-assisted."
|
| 131 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 132 |
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
for name, model_id in MODELS.items():
|
| 137 |
-
results[name] = run_hf_model(model_id, text)
|
| 138 |
|
| 139 |
-
|
| 140 |
-
|
| 141 |
|
| 142 |
-
|
| 143 |
-
# Final Verdict (Hybrid Rule)
|
| 144 |
-
# ---------------------------
|
| 145 |
-
ai_probs = []
|
| 146 |
-
strong_ai_detector = None
|
| 147 |
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
if v["AI Probability"] > 90: # strong AI flag
|
| 152 |
-
strong_ai_detector = v
|
| 153 |
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
final_verdict = verdict(strong_ai_detector["AI Probability"])
|
| 158 |
-
if "Identified LLM" in strong_ai_detector:
|
| 159 |
-
final_verdict += f" (Identified: {strong_ai_detector['Identified LLM']})"
|
| 160 |
else:
|
| 161 |
-
|
|
|
|
|
|
|
|
|
|
| 162 |
|
| 163 |
results["Final Score"] = {
|
| 164 |
-
"
|
| 165 |
-
|
|
|
|
| 166 |
}
|
| 167 |
return results
|
| 168 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 169 |
if __name__ == "__main__":
|
| 170 |
sample = "This is a test sentence written by AI or human."
|
| 171 |
print(detect_text(sample))
|
|
|
|
| 28 |
model_3.load_state_dict(torch.hub.load_state_dict_from_url(model3_path, map_location=device))
|
| 29 |
model_3.to(device).eval()
|
| 30 |
|
| 31 |
+
label_mapping = { ... } # keep as is
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
|
| 33 |
+
# ---------------------------
|
| 34 |
+
# Text Cleaning
|
| 35 |
+
# ---------------------------
|
| 36 |
def clean_text(text: str) -> str:
|
|
|
|
| 37 |
text = text.replace("\xa0", " ").replace("\u200b", "")
|
|
|
|
|
|
|
| 38 |
text = re.sub(r"\s{2,}", " ", text)
|
|
|
|
|
|
|
| 39 |
text = re.sub(r"\s+([,.;:?!])", r"\1", text)
|
|
|
|
|
|
|
| 40 |
return text.strip()
|
| 41 |
|
| 42 |
+
# ---------------------------
|
| 43 |
+
# SzegedAI Detector
|
| 44 |
+
# ---------------------------
|
| 45 |
def classify_szegedai(text: str):
|
|
|
|
| 46 |
cleaned_text = clean_text(text)
|
| 47 |
if not cleaned_text.strip():
|
| 48 |
return {"error": "Empty text"}
|
|
|
|
| 60 |
|
| 61 |
probs = probs[0]
|
| 62 |
ai_probs = probs.clone()
|
| 63 |
+
ai_probs[24] = 0 # "human"
|
| 64 |
ai_total_prob = ai_probs.sum().item() * 100
|
| 65 |
human_prob = 100 - ai_total_prob
|
| 66 |
|
|
|
|
| 74 |
}
|
| 75 |
|
| 76 |
# ---------------------------
|
| 77 |
+
# HuggingFace Detectors
|
| 78 |
# ---------------------------
|
| 79 |
MODELS = {
|
|
|
|
| 80 |
"MonkeyDAnh": "MonkeyDAnh/my-awesome-ai-detector-roberta-base-v4-human-vs-machine-finetune",
|
| 81 |
# "Andreas122001": "andreas122001/roberta-academic-detector",
|
| 82 |
}
|
|
|
|
| 94 |
return {"error": str(e)}
|
| 95 |
|
| 96 |
# ---------------------------
|
| 97 |
+
# Verdict Logic
|
| 98 |
# ---------------------------
|
| 99 |
def verdict(ai_prob):
|
|
|
|
| 100 |
if ai_prob < 20:
|
| 101 |
return "Most likely human-written."
|
| 102 |
elif 20 <= ai_prob < 40:
|
|
|
|
| 105 |
return "Unclear – could be either human or AI-assisted."
|
| 106 |
elif 60 <= ai_prob < 80:
|
| 107 |
return "Possibly AI-generated, or a human using AI assistance."
|
| 108 |
+
else:
|
| 109 |
return "Likely AI-generated or heavily AI-assisted."
|
| 110 |
|
| 111 |
+
# ---------------------------
|
| 112 |
+
# Weighted Final Score
|
| 113 |
+
# ---------------------------
|
| 114 |
+
def compute_final_score(results: dict) -> dict:
|
| 115 |
+
weighted_ai_probs = []
|
| 116 |
+
weighted_human_probs = []
|
| 117 |
+
weights = []
|
| 118 |
|
| 119 |
+
for model, scores in results.items():
|
| 120 |
+
if model == "Final Score" or "AI Probability" not in scores:
|
| 121 |
+
continue
|
|
|
|
|
|
|
| 122 |
|
| 123 |
+
ai_prob = scores.get("AI Probability", 0.0)
|
| 124 |
+
human_prob = scores.get("Human Probability", 0.0)
|
| 125 |
|
| 126 |
+
weight = 0.5 if model == "SzegedAI Detector" else 1.0
|
|
|
|
|
|
|
|
|
|
|
|
|
| 127 |
|
| 128 |
+
weighted_ai_probs.append(ai_prob * weight)
|
| 129 |
+
weighted_human_probs.append(human_prob * weight)
|
| 130 |
+
weights.append(weight)
|
|
|
|
|
|
|
| 131 |
|
| 132 |
+
if not weights:
|
| 133 |
+
avg_ai_prob = 0
|
| 134 |
+
avg_human_prob = 100
|
|
|
|
|
|
|
|
|
|
| 135 |
else:
|
| 136 |
+
avg_ai_prob = sum(weighted_ai_probs) / sum(weights)
|
| 137 |
+
avg_human_prob = sum(weighted_human_probs) / sum(weights)
|
| 138 |
+
|
| 139 |
+
verdict_text = verdict(avg_ai_prob)
|
| 140 |
|
| 141 |
results["Final Score"] = {
|
| 142 |
+
"Human Probability": round(avg_human_prob, 2),
|
| 143 |
+
"AI Probability": round(avg_ai_prob, 2),
|
| 144 |
+
"Verdict": verdict_text
|
| 145 |
}
|
| 146 |
return results
|
| 147 |
|
| 148 |
+
# ---------------------------
|
| 149 |
+
# Main Detector
|
| 150 |
+
# ---------------------------
|
| 151 |
+
def detect_text(text):
|
| 152 |
+
results = {}
|
| 153 |
+
for name, model_id in MODELS.items():
|
| 154 |
+
results[name] = run_hf_model(model_id, text)
|
| 155 |
+
|
| 156 |
+
results["SzegedAI Detector"] = classify_szegedai(text)
|
| 157 |
+
|
| 158 |
+
# compute weighted final score
|
| 159 |
+
results = compute_final_score(results)
|
| 160 |
+
|
| 161 |
+
return results
|
| 162 |
+
|
| 163 |
if __name__ == "__main__":
|
| 164 |
sample = "This is a test sentence written by AI or human."
|
| 165 |
print(detect_text(sample))
|