Spaces:
Running
Running
Upload 2 files
Browse files- ai_text_detector_valid_final.py +59 -0
- app.py +18 -0
ai_text_detector_valid_final.py
ADDED
|
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
|
| 3 |
+
import numpy as np
|
| 4 |
+
|
| 5 |
+
# Multiple AI text detection models
|
| 6 |
+
MODELS = {
|
| 7 |
+
"OpenAI Detector": "roberta-base-openai-detector", # HuggingFace OpenAI GPT-2 detector
|
| 8 |
+
"GPT Detector": "Kishanjaisoorya/AI-Text-Detector", # Community AI detector
|
| 9 |
+
"GPTZero-Style": "Hello-SimpleAI/chatgpt-detector-roberta" # Another HF model
|
| 10 |
+
}
|
| 11 |
+
|
| 12 |
+
def load_model(model_id):
|
| 13 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 14 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_id)
|
| 15 |
+
return tokenizer, model
|
| 16 |
+
|
| 17 |
+
def predict(text, tokenizer, model):
|
| 18 |
+
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
|
| 19 |
+
with torch.no_grad():
|
| 20 |
+
outputs = model(**inputs)
|
| 21 |
+
probs = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
| 22 |
+
return probs[0].numpy() # [human_prob, ai_prob]
|
| 23 |
+
|
| 24 |
+
def detect_text(text):
|
| 25 |
+
results = {}
|
| 26 |
+
ai_scores = []
|
| 27 |
+
|
| 28 |
+
for name, model_id in MODELS.items():
|
| 29 |
+
try:
|
| 30 |
+
tokenizer, model = load_model(model_id)
|
| 31 |
+
probs = predict(text, tokenizer, model)
|
| 32 |
+
human_score, ai_score = probs
|
| 33 |
+
results[name] = {
|
| 34 |
+
"Human Probability": round(float(human_score) * 100, 2),
|
| 35 |
+
"AI Probability": round(float(ai_score) * 100, 2),
|
| 36 |
+
}
|
| 37 |
+
ai_scores.append(ai_score)
|
| 38 |
+
except Exception as e:
|
| 39 |
+
results[name] = {"error": str(e)}
|
| 40 |
+
|
| 41 |
+
# Final average score across models
|
| 42 |
+
if ai_scores:
|
| 43 |
+
avg_ai = np.mean(ai_scores) * 100
|
| 44 |
+
results["Final Score"] = {
|
| 45 |
+
"AI Probability (average)": round(avg_ai, 2),
|
| 46 |
+
"Human Probability (average)": round(100 - avg_ai, 2),
|
| 47 |
+
}
|
| 48 |
+
|
| 49 |
+
return results
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
if __name__ == "__main__":
|
| 53 |
+
text = input("Enter text to analyze:\n")
|
| 54 |
+
output = detect_text(text)
|
| 55 |
+
print("\n--- Detection Results ---")
|
| 56 |
+
for model, scores in output.items():
|
| 57 |
+
print(f"\n[{model}]")
|
| 58 |
+
for k, v in scores.items():
|
| 59 |
+
print(f"{k}: {v}%")
|
app.py
ADDED
|
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import ai_text_detector_valid_final as detector
|
| 3 |
+
|
| 4 |
+
def run_detector(text):
|
| 5 |
+
try:
|
| 6 |
+
return detector.detect_text(text) # change if your function is named differently
|
| 7 |
+
except Exception as e:
|
| 8 |
+
return f"Error: {e}"
|
| 9 |
+
|
| 10 |
+
demo = gr.Interface(
|
| 11 |
+
fn=run_detector,
|
| 12 |
+
inputs=gr.Textbox(lines=10, placeholder="Paste your text here..."),
|
| 13 |
+
outputs="text",
|
| 14 |
+
title="AI Text Detector",
|
| 15 |
+
description="Check if text is AI-generated or human."
|
| 16 |
+
)
|
| 17 |
+
|
| 18 |
+
demo.launch()
|