import os import torch from transformers import AutoTokenizer, AutoModelForSequenceClassification import numpy as np import re device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # --------------------------- # ModernBERT Models (SzegedAI) # --------------------------- model1_path = "modernbert.bin" model2_path = "https://huggingface.co/mihalykiss/modernbert_2/resolve/main/Model_groups_3class_seed12" model3_path = "https://huggingface.co/mihalykiss/modernbert_2/resolve/main/Model_groups_3class_seed22" tokenizer_modernbert = AutoTokenizer.from_pretrained("answerdotai/ModernBERT-base") model_1 = AutoModelForSequenceClassification.from_pretrained("answerdotai/ModernBERT-base", num_labels=41) model_1.load_state_dict(torch.load(model1_path, map_location=device)) model_1.to(device).eval() model_2 = AutoModelForSequenceClassification.from_pretrained("answerdotai/ModernBERT-base", num_labels=41) model_2.load_state_dict(torch.hub.load_state_dict_from_url(model2_path, map_location=device)) model_2.to(device).eval() model_3 = AutoModelForSequenceClassification.from_pretrained("answerdotai/ModernBERT-base", num_labels=41) model_3.load_state_dict(torch.hub.load_state_dict_from_url(model3_path, map_location=device)) model_3.to(device).eval() label_mapping = { 0: '13B', 1: '30B', 2: '65B', 3: '7B', 4: 'GLM130B', 5: 'bloom_7b', 6: 'bloomz', 7: 'cohere', 8: 'davinci', 9: 'dolly', 10: 'dolly-v2-12b', 11: 'flan_t5_base', 12: 'flan_t5_large', 13: 'flan_t5_small', 14: 'flan_t5_xl', 15: 'flan_t5_xxl', 16: 'gemma-7b-it', 17: 'gemma2-9b-it', 18: 'gpt-3.5-turbo', 19: 'gpt-35', 20: 'gpt4', 21: 'gpt4o', 22: 'gpt_j', 23: 'gpt_neox', 24: 'human', 25: 'llama3-70b', 26: 'llama3-8b', 27: 'mixtral-8x7b', 28: 'opt_1.3b', 29: 'opt_125m', 30: 'opt_13b', 31: 'opt_2.7b', 32: 'opt_30b', 33: 'opt_350m', 34: 'opt_6.7b', 35: 'opt_iml_30b', 36: 'opt_iml_max_1.3b', 37: 't0_11b', 38: 't0_3b', 39: 'text-davinci-002', 40: 'text-davinci-003' } def clean_text(text: str) -> str: """Normalize text for ModernBERT""" text = text.replace("\xa0", " ").replace("\u200b", "") text = re.sub(r"\s{2,}", " ", text) text = re.sub(r"\s+([,.;:?!])", r"\1", text) return text.strip() def classify_szegedai(text: str): """ ModernBERT ensemble detector with: - Human label boost - Short text handling (<30 words ignored) """ cleaned_text = clean_text(text) if not cleaned_text.strip(): return {"error": "Empty text"} word_count = len(cleaned_text.split()) if word_count < 30: # For very short texts, skip AI classification and assume mostly human return {"Please Enter at least 30 words"} inputs = tokenizer_modernbert(cleaned_text, return_tensors="pt", truncation=True, padding=True).to(device) with torch.no_grad(): logits_1 = model_1(**inputs).logits logits_2 = model_2(**inputs).logits logits_3 = model_3(**inputs).logits probs1 = torch.softmax(logits_1, dim=1) probs2 = torch.softmax(logits_2, dim=1) probs3 = torch.softmax(logits_3, dim=1) human_index = 24 for p in [probs1, probs2, probs3]: p[:, human_index] *= 2.0 # Boost human label p = p / p.sum(dim=1, keepdim=True) # Re-normalize probs = (probs1 + probs2 + probs3) / 3 human_prob = probs[0][human_index].item() * 100 ai_prob = 100 - human_prob return {"Human Probability": round(human_prob, 2), "AI Probability": round(ai_prob, 2)} # --------------------------- # HuggingFace other models # --------------------------- MODELS = { "MonkeyDAnh": "MonkeyDAnh/my-awesome-ai-detector-roberta-base-v4-human-vs-machine-finetune", } def run_hf_model(model_id, text): try: tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForSequenceClassification.from_pretrained(model_id) inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True) with torch.no_grad(): logits = model(**inputs).logits probs = torch.softmax(logits, dim=-1).cpu().numpy()[0] return {"Human Probability": float(probs[0]*100), "AI Probability": float(probs[1]*100)} except Exception as e: return {"error": str(e)} # --------------------------- # Verdict logic # --------------------------- def verdict(ai_prob): if ai_prob < 20: return "Most likely human-written." elif 20 <= ai_prob < 40: return "Possibly human-written with minimal AI assistance." elif 40 <= ai_prob < 60: return "Unclear – could be either human or AI-assisted." elif 60 <= ai_prob < 80: return "Possibly AI-generated, or a human using AI assistance." else: return "Likely AI-generated or heavily AI-assisted." def detect_text(text): results = {} # Run other HuggingFace detectors for name, model_id in MODELS.items(): results[name] = run_hf_model(model_id, text) # Run ModernBERT ensemble results["SzegedAI Detector"] = classify_szegedai(text) # Compute average AI probability ai_probs = [] strong_ai_detector = None for v in results.values(): if "AI Probability" in v: ai_probs.append(v["AI Probability"]) if v["AI Probability"] > 90: # strong AI flag strong_ai_detector = v avg_ai = np.mean(ai_probs) if ai_probs else 0 if strong_ai_detector: final_verdict = verdict(strong_ai_detector["AI Probability"]) else: final_verdict = verdict(avg_ai) results["Final Score"] = {"Verdict": final_verdict} return results # --------------------------- # Test Example # --------------------------- if __name__ == "__main__": sample = "This is a test sentence written by a human." print(detect_text(sample))