Delete multi_modal_model.py
Browse files- multi_modal_model.py +0 -172
multi_modal_model.py
DELETED
|
@@ -1,172 +0,0 @@
|
|
| 1 |
-
import os
|
| 2 |
-
import torch
|
| 3 |
-
import torch.nn as nn
|
| 4 |
-
import torch.optim as optim
|
| 5 |
-
from transformers import (
|
| 6 |
-
BartForConditionalGeneration,
|
| 7 |
-
AutoModelForCausalLM,
|
| 8 |
-
BertModel,
|
| 9 |
-
Wav2Vec2Model,
|
| 10 |
-
CLIPModel,
|
| 11 |
-
AutoTokenizer
|
| 12 |
-
)
|
| 13 |
-
import numpy as np
|
| 14 |
-
import random
|
| 15 |
-
import copy
|
| 16 |
-
|
| 17 |
-
class MultiModalModel(nn.Module):
|
| 18 |
-
def __init__(self):
|
| 19 |
-
super(MultiModalModel, self).__init__()
|
| 20 |
-
# 初始化子模型
|
| 21 |
-
self.text_generator = BartForConditionalGeneration.from_pretrained('facebook/bart-base')
|
| 22 |
-
self.code_generator = AutoModelForCausalLM.from_pretrained('gpt2')
|
| 23 |
-
self.nlp_encoder = BertModel.from_pretrained('bert-base-uncased')
|
| 24 |
-
self.speech_encoder = Wav2Vec2Model.from_pretrained('facebook/wav2vec2-base-960h')
|
| 25 |
-
self.vision_encoder = CLIPModel.from_pretrained('openai/clip-vit-base-patch32')
|
| 26 |
-
|
| 27 |
-
# 初始化分词器和处理器
|
| 28 |
-
self.text_tokenizer = AutoTokenizer.from_pretrained('facebook/bart-base')
|
| 29 |
-
self.code_tokenizer = AutoTokenizer.from_pretrained('gpt2')
|
| 30 |
-
self.nlp_tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased')
|
| 31 |
-
self.speech_processor = AutoTokenizer.from_pretrained('facebook/wav2vec2-base-960h')
|
| 32 |
-
self.vision_processor = AutoTokenizer.from_pretrained('openai/clip-vit-base-patch32')
|
| 33 |
-
|
| 34 |
-
def forward(self, task, inputs):
|
| 35 |
-
if task == 'text_generation':
|
| 36 |
-
attention_mask = inputs.attention_mask
|
| 37 |
-
outputs = self.text_generator.generate(
|
| 38 |
-
inputs.input_ids,
|
| 39 |
-
max_new_tokens=50,
|
| 40 |
-
pad_token_id=self.text_tokenizer.eos_token_id,
|
| 41 |
-
attention_mask=attention_mask,
|
| 42 |
-
top_p=0.95,
|
| 43 |
-
top_k=50,
|
| 44 |
-
temperature=1.2,
|
| 45 |
-
do_sample=True
|
| 46 |
-
)
|
| 47 |
-
return self.text_tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 48 |
-
elif task == 'code_generation':
|
| 49 |
-
attention_mask = inputs.attention_mask
|
| 50 |
-
outputs = self.code_generator.generate(
|
| 51 |
-
inputs.input_ids,
|
| 52 |
-
max_new_tokens=50,
|
| 53 |
-
pad_token_id=self.code_tokenizer.eos_token_id,
|
| 54 |
-
attention_mask=attention_mask,
|
| 55 |
-
top_p=0.95,
|
| 56 |
-
top_k=50,
|
| 57 |
-
temperature=1.2,
|
| 58 |
-
do_sample=True
|
| 59 |
-
)
|
| 60 |
-
return self.code_tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 61 |
-
elif task == 'text_understanding':
|
| 62 |
-
outputs = self.nlp_encoder(**inputs)
|
| 63 |
-
return outputs.last_hidden_state
|
| 64 |
-
elif task == 'speech_recognition':
|
| 65 |
-
outputs = self.speech_encoder(**inputs).logits
|
| 66 |
-
predicted_ids = torch.argmax(outputs, dim=-1)
|
| 67 |
-
transcription = self.speech_processor.batch_decode(predicted_ids)[0]
|
| 68 |
-
return transcription
|
| 69 |
-
elif task == 'vision_understanding':
|
| 70 |
-
outputs = self.vision_encoder.get_image_features(**inputs)
|
| 71 |
-
return outputs
|
| 72 |
-
|
| 73 |
-
def save_model(self, save_directory):
|
| 74 |
-
os.makedirs(save_directory, exist_ok=True)
|
| 75 |
-
torch.save(self.state_dict(), os.path.join(save_directory, 'multi_modal_model_state_dict.pth'))
|
| 76 |
-
self.text_tokenizer.save_pretrained(os.path.join(save_directory, 'text_generator'))
|
| 77 |
-
self.code_tokenizer.save_pretrained(os.path.join(save_directory, 'code_generator'))
|
| 78 |
-
self.nlp_tokenizer.save_pretrained(os.path.join(save_directory, 'nlp_encoder'))
|
| 79 |
-
self.speech_processor.save_pretrained(os.path.join(save_directory, 'speech_encoder'))
|
| 80 |
-
self.vision_processor.save_pretrained(os.path.join(save_directory, 'vision_encoder'))
|
| 81 |
-
|
| 82 |
-
def load_model(self, load_directory):
|
| 83 |
-
self.load_state_dict(torch.load(os.path.join(load_directory, 'multi_modal_model_state_dict.pth')))
|
| 84 |
-
self.text_tokenizer = AutoTokenizer.from_pretrained(os.path.join(load_directory, 'text_generator'))
|
| 85 |
-
self.code_tokenizer = AutoTokenizer.from_pretrained(os.path.join(load_directory, 'code_generator'))
|
| 86 |
-
self.nlp_tokenizer = AutoTokenizer.from_pretrained(os.path.join(load_directory, 'nlp_encoder'))
|
| 87 |
-
self.speech_processor = AutoTokenizer.from_pretrained(os.path.join(load_directory, 'speech_encoder'))
|
| 88 |
-
self.vision_processor = AutoTokenizer.from_pretrained(os.path.join(load_directory, 'vision_encoder'))
|
| 89 |
-
|
| 90 |
-
class EvolutionaryMultiModalNetwork(nn.Module):
|
| 91 |
-
def __init__(self, device='cuda' if torch.cuda.is_available() else 'cpu'):
|
| 92 |
-
super(EvolutionaryMultiModalNetwork, self).__init__()
|
| 93 |
-
self.device = device
|
| 94 |
-
self.multi_modal_model = MultiModalModel().to(self.device)
|
| 95 |
-
self.mutation_params = {
|
| 96 |
-
'mutation_rate': 0.2, # 增加变异率
|
| 97 |
-
'mutation_scale': 0.05 # 增加变异幅度
|
| 98 |
-
}
|
| 99 |
-
|
| 100 |
-
def mutate_model(self, model):
|
| 101 |
-
"""
|
| 102 |
-
模型参数变异
|
| 103 |
-
"""
|
| 104 |
-
for param in model.parameters():
|
| 105 |
-
if param.requires_grad:
|
| 106 |
-
noise = torch.normal(
|
| 107 |
-
mean=torch.zeros_like(param.data),
|
| 108 |
-
std=self.mutation_params['mutation_scale']
|
| 109 |
-
).to(self.device)
|
| 110 |
-
if random.random() < self.mutation_params['mutation_rate']:
|
| 111 |
-
param.data.add_(noise)
|
| 112 |
-
return model
|
| 113 |
-
|
| 114 |
-
def evaluate_model(self, model, test_input):
|
| 115 |
-
"""
|
| 116 |
-
模型评估
|
| 117 |
-
"""
|
| 118 |
-
try:
|
| 119 |
-
with torch.no_grad():
|
| 120 |
-
output = model('text_generation', test_input)
|
| 121 |
-
complexity = sum(p.numel() for p in model.parameters())
|
| 122 |
-
performance = len(output) # 示例性能评估指标
|
| 123 |
-
return complexity, performance
|
| 124 |
-
except Exception as e:
|
| 125 |
-
print(f"模型评估错误: {e}")
|
| 126 |
-
return 0, 0
|
| 127 |
-
|
| 128 |
-
def save_models(self, save_dir='./model_checkpoints'):
|
| 129 |
-
"""
|
| 130 |
-
保存模型
|
| 131 |
-
"""
|
| 132 |
-
os.makedirs(save_dir, exist_ok=True)
|
| 133 |
-
self.multi_modal_model.save_model(os.path.join(save_dir, 'multi_modal_model'))
|
| 134 |
-
print(f"模型已保存到 {save_dir}")
|
| 135 |
-
|
| 136 |
-
def evolutionary_training(self, epochs=5):
|
| 137 |
-
"""
|
| 138 |
-
进化训练
|
| 139 |
-
"""
|
| 140 |
-
print("🧬 开始进化训练...")
|
| 141 |
-
|
| 142 |
-
for epoch in range(epochs):
|
| 143 |
-
print(f"\n🌟 第 {epoch+1} 代:")
|
| 144 |
-
|
| 145 |
-
# 模型变异
|
| 146 |
-
self.multi_modal_model = self.mutate_model(self.multi_modal_model)
|
| 147 |
-
|
| 148 |
-
# 模型评估
|
| 149 |
-
test_input = self.multi_modal_model.text_tokenizer("Sample input for evaluation.", return_tensors='pt').to(self.device)
|
| 150 |
-
complexity, performance = self.evaluate_model(self.multi_modal_model, test_input)
|
| 151 |
-
print(f"多模态模型 - 复杂度: {complexity}, 性能: {performance:.4f}")
|
| 152 |
-
|
| 153 |
-
def main():
|
| 154 |
-
# 设置随机种子
|
| 155 |
-
torch.manual_seed(42)
|
| 156 |
-
np.random.seed(42)
|
| 157 |
-
random.seed(42)
|
| 158 |
-
|
| 159 |
-
# 创建进化多模态神经网络
|
| 160 |
-
evo_network = EvolutionaryMultiModalNetwork()
|
| 161 |
-
|
| 162 |
-
# 打印模型信息
|
| 163 |
-
evo_network.multi_modal_model.text_generator.config # 打印模型配置示例
|
| 164 |
-
|
| 165 |
-
# 进化训练
|
| 166 |
-
evo_network.evolutionary_training(epochs=5)
|
| 167 |
-
|
| 168 |
-
# 保存模型
|
| 169 |
-
evo_network.save_models()
|
| 170 |
-
|
| 171 |
-
if __name__ == "__main__":
|
| 172 |
-
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|