Efficient Few-Shot Learning Without Prompts
Paper
•
2209.11055
•
Published
•
4
This is a SetFit model that can be used for Text Classification. This SetFit model uses BAAI/bge-small-en-v1.5 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
| Label | Examples |
|---|---|
| 0 |
|
| 1 |
|
| Label | Accuracy |
|---|---|
| all | 1.0 |
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("Gopal2002/COAL_INVOICE_ZEON")
# Run inference
preds = model("UNITED MEDICAL STORE Patient Name: KASTURI uENA
‘EW MARKET, C/O PRAFULLA KUMAR JENA
HIRAKUD. SAMBALPUR. Dr. Name :
Medicine Advice Slip: MA/2223/0668 “
Phone :0663-2431670 Prescription Indent:M/2223/06299
DL No. :SAWZ 486 R/487 RC Invoice No. ; 0002785 Date : 21/11/2022
Se|__Qiy. [Pack [Product “Batch [Exp] HSN [ MRP | Table | Dis [5051] CO3i] Amount |
1. 30 TAB] 30'S TELMA H TAB 11/24 | 30049099; 484.00! 432.14 0.001 6.00
NEOPRIDE TOTAL CAP 7/24 30049099) 445.00) 0,00; 6.00
SUB TOTAL :
SGST
er rH 2 ROFF :
— ha GRAND TOTAL
Te & Con itions For UNITED MEDICAL STORE R a ah
BILL GRAND TOTAL IS CALCULATED ACCORDING TO 1D- 3306 Im- 1220
MRP PRICE ( INCLUDING ALL GST TAXES ) Q _ 06 (ped)
")
| Training set | Min | Median | Max |
|---|---|---|---|
| Word count | 1 | 270.5442 | 4241 |
| Label | Training Sample Count |
|---|---|
| 0 | 130 |
| 1 | 85 |
| Epoch | Step | Training Loss | Validation Loss |
|---|---|---|---|
| 0.0013 | 1 | 0.2394 | - |
| 0.0657 | 50 | 0.1203 | - |
| 0.1314 | 100 | 0.0095 | - |
| 0.1971 | 150 | 0.0029 | - |
| 0.2628 | 200 | 0.0014 | - |
| 0.3285 | 250 | 0.0014 | - |
| 0.3942 | 300 | 0.0011 | - |
| 0.4599 | 350 | 0.0009 | - |
| 0.5256 | 400 | 0.0008 | - |
| 0.5913 | 450 | 0.0007 | - |
| 0.6570 | 500 | 0.0008 | - |
| 0.7227 | 550 | 0.0008 | - |
| 0.7884 | 600 | 0.0006 | - |
| 0.8541 | 650 | 0.0005 | - |
| 0.9198 | 700 | 0.0004 | - |
| 0.9855 | 750 | 0.0005 | - |
| 1.0512 | 800 | 0.0004 | - |
| 1.1170 | 850 | 0.0005 | - |
| 1.1827 | 900 | 0.0004 | - |
| 1.2484 | 950 | 0.0004 | - |
| 1.3141 | 1000 | 0.0003 | - |
| 1.3798 | 1050 | 0.0004 | - |
| 1.4455 | 1100 | 0.0004 | - |
| 1.5112 | 1150 | 0.0004 | - |
| 1.5769 | 1200 | 0.0005 | - |
| 1.6426 | 1250 | 0.0004 | - |
| 1.7083 | 1300 | 0.0003 | - |
| 1.7740 | 1350 | 0.0004 | - |
| 1.8397 | 1400 | 0.0005 | - |
| 1.9054 | 1450 | 0.0004 | - |
| 1.9711 | 1500 | 0.0003 | - |
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}