To generate text using the AutoTokenizer and AutoModelForCausalLM from the Hugging Face Transformers library, you can follow these steps. First, ensure you have the necessary libraries installed:
pip install transformers torch
Then, use the following Python code to load the model and generate text:
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("Xennon-BD/Doctor-Chad")
model = AutoModelForCausalLM.from_pretrained("Xennon-BD/Doctor-Chad")
# Define the input prompt
input_text = "Hello, how are you doing today?"
# Encode the input text
input_ids = tokenizer.encode(input_text, return_tensors="pt")
# Generate text
output_ids = model.generate(input_ids, max_length=50, num_return_sequences=1, do_sample=True)
# Decode the generated text
generated_text = tokenizer.decode(output_ids[0], skip_special_tokens=True)
print(generated_text)
Explanation:
Load the Tokenizer and Model:
tokenizer = AutoTokenizer.from_pretrained("Xennon-BD/Doctor-Chad") model = AutoModelForCausalLM.from_pretrained("Xennon-BD/Doctor-Chad")This code loads the tokenizer and model from the specified Hugging Face model repository.
Define the Input Prompt:
input_text = "Hello, how are you doing today?"This is the text prompt that you want the model to complete or generate text from.
Encode the Input Text:
input_ids = tokenizer.encode(input_text, return_tensors="pt")The
tokenizer.encodemethod converts the input text into token IDs that the model can process. Thereturn_tensors="pt"argument specifies that the output should be in the form of PyTorch tensors.Generate Text:
output_ids = model.generate(input_ids, max_length=50, num_return_sequences=1, do_sample=True)The
model.generatemethod generates text based on the input token IDs.max_length=50specifies the maximum length of the generated text.num_return_sequences=1specifies the number of generated text sequences to return.do_sample=Trueindicates that sampling should be used to generate text, which introduces some randomness and can produce more varied text.
Decode the Generated Text:
generated_text = tokenizer.decode(output_ids[0], skip_special_tokens=True)The
tokenizer.decodemethod converts the generated token IDs back into human-readable text. Theskip_special_tokens=Trueargument ensures that special tokens (like<|endoftext|>) are not included in the output.Print the Generated Text:
print(generated_text)This prints the generated text to the console.
You can modify the input prompt and the parameters of the model.generate method to suit your needs, such as adjusting max_length for longer or shorter text generation, or changing num_return_sequences to generate multiple variations.
- Downloads last month
- 13