medsiglip-448-scin-classification
This model is a fine-tuned version of google/medsiglip-448 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.3754
- Roc Auc: 0.9760
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 5
- num_epochs: 3
Training results
| Training Loss | Epoch | Step | Validation Loss | Roc Auc |
|---|---|---|---|---|
| 2.8561 | 0.1985 | 40 | 1.3265 | 0.7629 |
| 2.4018 | 0.3970 | 80 | 0.9869 | 0.8771 |
| 1.6941 | 0.5955 | 120 | 0.7613 | 0.9162 |
| 1.4797 | 0.7940 | 160 | 0.6767 | 0.9398 |
| 1.1814 | 0.9926 | 200 | 0.5849 | 0.9560 |
| 0.884 | 1.1886 | 240 | 0.4970 | 0.9630 |
| 0.7607 | 1.3871 | 280 | 0.4639 | 0.9663 |
| 0.7558 | 1.5856 | 320 | 0.4327 | 0.9694 |
| 0.6405 | 1.7841 | 360 | 0.4078 | 0.9721 |
| 0.6299 | 1.9826 | 400 | 0.3851 | 0.9751 |
| 0.4243 | 2.1787 | 440 | 0.3819 | 0.9753 |
| 0.3755 | 2.3772 | 480 | 0.3830 | 0.9745 |
| 0.3719 | 2.5757 | 520 | 0.3793 | 0.9756 |
| 0.36 | 2.7742 | 560 | 0.3756 | 0.9761 |
| 0.3645 | 2.9727 | 600 | 0.3754 | 0.9760 |
Framework versions
- Transformers 4.57.3
- Pytorch 2.9.1+cu128
- Datasets 4.4.1
- Tokenizers 0.22.1
- Downloads last month
- 8
Model tree for amoghajnalens/medsiglip-448-scin-classification
Base model
google/medsiglip-448