|
|
--- |
|
|
tags: |
|
|
- sentence-transformers |
|
|
- sentence-similarity |
|
|
- feature-extraction |
|
|
base_model: NovaSearch/stella_en_1.5B_v5 |
|
|
widget: |
|
|
- source_sentence: $230 pool for outdoors not plastic |
|
|
sentences: |
|
|
- >- |
|
|
Wireless Outdoor Security Camera, WiFi Solar Rechargeable Battery Power IP |
|
|
Surveillance Home Cameras, 1080P, Human Motion Detection, Night Vision, |
|
|
2-Way Audio, 4dbi Antenna, IP65 Waterproof, Cloud/SD |
|
|
- Bestway SaluSpa Miami Inflatable Hot Tub, 4-Person AirJet Spa |
|
|
- Mens Plush Robe - Fleece Robe, Mens Bathrobe - Fig -Small/Medium |
|
|
- source_sentence: (hearing aid not amplifer) |
|
|
sentences: |
|
|
- Hearing Aid Cleaning Wire for Sound Tubes (2 Packs of 5) |
|
|
- >- |
|
|
Hearing Aids, Enjoyee Hearing Aids for Seniors Rechargeable Hearing |
|
|
Amplifier with Noise Cancelling for Adults Hearing Loss, Digital Ear Hearing |
|
|
Assist Devices with Volume Control |
|
|
- >- |
|
|
24 Pieces Checking Erasable Pencils Red Pencils Pre-Sharpened #2 HB with |
|
|
Erasable Tops for Checking Map Coloring Tests Grading |
|
|
- source_sentence: (can not use in the usa) european 220voltage hair tools |
|
|
sentences: |
|
|
- Umarex 2252109 Brodax Air Pistol .177 BB |
|
|
- >- |
|
|
One-Step Hair Dryer & Volumizer Hot Air Brush, 3-in-1 Hair Dryer Brush |
|
|
Styler for Straightening, Curling, Salon Negative Ion Ceramic Lightweight |
|
|
Blow Dryers Straightener Curl Hair Brush |
|
|
- >- |
|
|
Mini Portable Flat Iron Tourmaline Ceramic Dual Voltage Travel Iron for |
|
|
Worldwide Use LED Indicator LOVANI Hair Straightener (Ceramic Mini) |
|
|
- source_sentence: '''not my circus not my monkeys my monkeys flyshirt''' |
|
|
sentences: |
|
|
- >- |
|
|
Dresswel Women This is My Circus These are My Monkeys T-Shirt Mom Life |
|
|
Graphic Tee Pocket Shirt Casual Tops |
|
|
- >- |
|
|
Goyunwell Nylon Black Zippers by The Yard #5 10 Yards Nylon Black Long |
|
|
Zipper Tape for Sewing 20Pcs Gunmetal Pulls Slider Zipper by The Yard Black |
|
|
Zipper Roll for Craft Bag Purse Sewing Black Tape |
|
|
- Not My Circus Not My Monkeys Party T-Shirt |
|
|
- source_sentence: '#1 small corded treadmill without remote control' |
|
|
sentences: |
|
|
- >- |
|
|
Goplus Under Desk Treadmill, with Touchable LED Display and Wireless Remote |
|
|
Control, Built-in 3 Workout Modes and 12 Programs, Walking Jogging Machine, |
|
|
Superfit Electric Treadmill for Home Office |
|
|
- Pencil Guy Untipped white round pencil, no eraser 144 to a box |
|
|
- >- |
|
|
SUNNY HEALTH & FITNESS ASUNA Space Saving Treadmill, Motorized with Speakers |
|
|
for AUX Audio Connection - 8730G |
|
|
pipeline_tag: sentence-similarity |
|
|
library_name: sentence-transformers |
|
|
metrics: |
|
|
- cosine_accuracy@1 |
|
|
- cosine_accuracy@3 |
|
|
- cosine_accuracy@5 |
|
|
- cosine_accuracy@10 |
|
|
- cosine_precision@1 |
|
|
- cosine_precision@3 |
|
|
- cosine_precision@5 |
|
|
- cosine_precision@10 |
|
|
- cosine_recall@1 |
|
|
- cosine_recall@3 |
|
|
- cosine_recall@5 |
|
|
- cosine_recall@10 |
|
|
- cosine_ndcg@5 |
|
|
- cosine_ndcg@10 |
|
|
- cosine_mrr@1 |
|
|
- cosine_mrr@5 |
|
|
- cosine_mrr@10 |
|
|
- cosine_map@10 |
|
|
- cosine_map@100 |
|
|
model-index: |
|
|
- name: SentenceTransformer based on NovaSearch/stella_en_1.5B_v5 |
|
|
results: |
|
|
- task: |
|
|
type: information-retrieval |
|
|
name: Information Retrieval |
|
|
dataset: |
|
|
name: ir evaluation |
|
|
type: ir_evaluation |
|
|
metrics: |
|
|
- type: cosine_accuracy@1 |
|
|
value: 0.5243984708792444 |
|
|
name: Cosine Accuracy@1 |
|
|
- type: cosine_accuracy@3 |
|
|
value: 0.7189116258151563 |
|
|
name: Cosine Accuracy@3 |
|
|
- type: cosine_accuracy@5 |
|
|
value: 0.782325163031257 |
|
|
name: Cosine Accuracy@5 |
|
|
- type: cosine_accuracy@10 |
|
|
value: 0.8452889588486621 |
|
|
name: Cosine Accuracy@10 |
|
|
- type: cosine_precision@1 |
|
|
value: 0.5243984708792444 |
|
|
name: Cosine Precision@1 |
|
|
- type: cosine_precision@3 |
|
|
value: 0.44764260550183643 |
|
|
name: Cosine Precision@3 |
|
|
- type: cosine_precision@5 |
|
|
value: 0.4002248706993479 |
|
|
name: Cosine Precision@5 |
|
|
- type: cosine_precision@10 |
|
|
value: 0.3198335956824826 |
|
|
name: Cosine Precision@10 |
|
|
- type: cosine_recall@1 |
|
|
value: 0.09367303103726933 |
|
|
name: Cosine Recall@1 |
|
|
- type: cosine_recall@3 |
|
|
value: 0.21358059074273028 |
|
|
name: Cosine Recall@3 |
|
|
- type: cosine_recall@5 |
|
|
value: 0.2980042886250134 |
|
|
name: Cosine Recall@5 |
|
|
- type: cosine_recall@10 |
|
|
value: 0.43181596262310956 |
|
|
name: Cosine Recall@10 |
|
|
- type: cosine_ndcg@5 |
|
|
value: 0.46762394517912087 |
|
|
name: Cosine Ndcg@5 |
|
|
- type: cosine_ndcg@10 |
|
|
value: 0.46811760590873697 |
|
|
name: Cosine Ndcg@10 |
|
|
- type: cosine_mrr@1 |
|
|
value: 0.5243984708792444 |
|
|
name: Cosine Mrr@1 |
|
|
- type: cosine_mrr@5 |
|
|
value: 0.625680233865528 |
|
|
name: Cosine Mrr@5 |
|
|
- type: cosine_mrr@10 |
|
|
value: 0.6341315350816145 |
|
|
name: Cosine Mrr@10 |
|
|
- type: cosine_map@10 |
|
|
value: 0.34926714503106293 |
|
|
name: Cosine Map@10 |
|
|
- type: cosine_map@100 |
|
|
value: 0.4065326888005573 |
|
|
name: Cosine Map@100 |
|
|
- task: |
|
|
type: graded-ir |
|
|
name: Graded IR |
|
|
dataset: |
|
|
name: gr evaluation |
|
|
type: gr_evaluation |
|
|
metrics: |
|
|
- type: cosine_accuracy@1 |
|
|
value: 0.708792444344502 |
|
|
name: Cosine Accuracy@1 |
|
|
- type: cosine_accuracy@3 |
|
|
value: 0.9037553406791096 |
|
|
name: Cosine Accuracy@3 |
|
|
- type: cosine_accuracy@5 |
|
|
value: 0.9462559028558579 |
|
|
name: Cosine Accuracy@5 |
|
|
- type: cosine_accuracy@10 |
|
|
value: 0.9840341803463009 |
|
|
name: Cosine Accuracy@10 |
|
|
- type: cosine_precision@1 |
|
|
value: 0.708792444344502 |
|
|
name: Cosine Precision@1 |
|
|
- type: cosine_precision@3 |
|
|
value: 0.6468780451240538 |
|
|
name: Cosine Precision@3 |
|
|
- type: cosine_precision@5 |
|
|
value: 0.6044974139869574 |
|
|
name: Cosine Precision@5 |
|
|
- type: cosine_precision@10 |
|
|
value: 0.5283786822577018 |
|
|
name: Cosine Precision@10 |
|
|
- type: cosine_recall@1 |
|
|
value: 0.12721101888273206 |
|
|
name: Cosine Recall@1 |
|
|
- type: cosine_recall@3 |
|
|
value: 0.30930165915538804 |
|
|
name: Cosine Recall@3 |
|
|
- type: cosine_recall@5 |
|
|
value: 0.4489712213025254 |
|
|
name: Cosine Recall@5 |
|
|
- type: cosine_recall@10 |
|
|
value: 0.7098551817763595 |
|
|
name: Cosine Recall@10 |
|
|
- type: cosine_ndcg@5 |
|
|
value: 0.7127144186187505 |
|
|
name: Cosine Ndcg@5 |
|
|
- type: cosine_ndcg@10 |
|
|
value: 0.7543447490248549 |
|
|
name: Cosine Ndcg@10 |
|
|
- type: cosine_mrr@1 |
|
|
value: 0.708792444344502 |
|
|
name: Cosine Mrr@1 |
|
|
- type: cosine_mrr@5 |
|
|
value: 0.8065999550258622 |
|
|
name: Cosine Mrr@5 |
|
|
- type: cosine_mrr@10 |
|
|
value: 0.8118267710352285 |
|
|
name: Cosine Mrr@10 |
|
|
- type: cosine_map@10 |
|
|
value: 0.6051494969120079 |
|
|
name: Cosine Map@10 |
|
|
- type: cosine_map@100 |
|
|
value: 0.6944358205631005 |
|
|
name: Cosine Map@100 |
|
|
--- |
|
|
|
|
|
# SentenceTransformer based on NovaSearch/stella_en_1.5B_v5 |
|
|
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [NovaSearch/stella_en_1.5B_v5](https://huggingface.co/NovaSearch/stella_en_1.5B_v5). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
|
|
## Model Details |
|
|
|
|
|
### Model Description |
|
|
- **Model Type:** Sentence Transformer |
|
|
- **Base model:** [NovaSearch/stella_en_1.5B_v5](https://huggingface.co/NovaSearch/stella_en_1.5B_v5) <!-- at revision b467445fc9c39af69fdb1bda9e18416df4d19f3c --> |
|
|
- **Maximum Sequence Length:** 512 tokens |
|
|
- **Output Dimensionality:** 1024 dimensions |
|
|
- **Similarity Function:** Cosine Similarity |
|
|
<!-- - **Training Dataset:** Unknown --> |
|
|
<!-- - **Language:** Unknown --> |
|
|
<!-- - **License:** Unknown --> |
|
|
|
|
|
### Model Sources |
|
|
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
|
|
### Full Model Architecture |
|
|
|
|
|
``` |
|
|
SentenceTransformer( |
|
|
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: Qwen2Model |
|
|
(1): Pooling({'word_embedding_dimension': 1536, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
|
(2): Dense({'in_features': 1536, 'out_features': 1024, 'bias': True, 'activation_function': 'torch.nn.modules.linear.Identity'}) |
|
|
) |
|
|
``` |
|
|
|
|
|
## Usage |
|
|
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
|
|
First install the Sentence Transformers library: |
|
|
|
|
|
```bash |
|
|
pip install -U sentence-transformers |
|
|
``` |
|
|
|
|
|
Then you can load this model and run inference. |
|
|
```python |
|
|
from sentence_transformers import SentenceTransformer |
|
|
|
|
|
# Download from the 🤗 Hub |
|
|
model = SentenceTransformer("bod9/fulldshardneg") |
|
|
# Run inference |
|
|
sentences = [ |
|
|
'#1 small corded treadmill without remote control', |
|
|
'SUNNY HEALTH & FITNESS ASUNA Space Saving Treadmill, Motorized with Speakers for AUX Audio Connection - 8730G', |
|
|
'Goplus Under Desk Treadmill, with Touchable LED Display and Wireless Remote Control, Built-in 3 Workout Modes and 12 Programs, Walking Jogging Machine, Superfit Electric Treadmill for Home Office', |
|
|
] |
|
|
embeddings = model.encode(sentences) |
|
|
print(embeddings.shape) |
|
|
# [3, 1024] |
|
|
|
|
|
# Get the similarity scores for the embeddings |
|
|
similarities = model.similarity(embeddings, embeddings) |
|
|
print(similarities.shape) |
|
|
# [3, 3] |
|
|
``` |
|
|
|
|
|
<!-- |
|
|
### Direct Usage (Transformers) |
|
|
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
|
|
</details> |
|
|
--> |
|
|
|
|
|
<!-- |
|
|
### Downstream Usage (Sentence Transformers) |
|
|
|
|
|
You can finetune this model on your own dataset. |
|
|
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
|
|
</details> |
|
|
--> |
|
|
|
|
|
<!-- |
|
|
### Out-of-Scope Use |
|
|
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
|
--> |
|
|
|
|
|
## Evaluation |
|
|
|
|
|
### Metrics |
|
|
|
|
|
#### Information Retrieval |
|
|
|
|
|
* Dataset: `ir_evaluation` |
|
|
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) |
|
|
|
|
|
| Metric | Value | |
|
|
|:--------------------|:-----------| |
|
|
| cosine_accuracy@1 | 0.5244 | |
|
|
| cosine_accuracy@3 | 0.7189 | |
|
|
| cosine_accuracy@5 | 0.7823 | |
|
|
| cosine_accuracy@10 | 0.8453 | |
|
|
| cosine_precision@1 | 0.5244 | |
|
|
| cosine_precision@3 | 0.4476 | |
|
|
| cosine_precision@5 | 0.4002 | |
|
|
| cosine_precision@10 | 0.3198 | |
|
|
| cosine_recall@1 | 0.0937 | |
|
|
| cosine_recall@3 | 0.2136 | |
|
|
| cosine_recall@5 | 0.298 | |
|
|
| cosine_recall@10 | 0.4318 | |
|
|
| cosine_ndcg@5 | 0.4676 | |
|
|
| **cosine_ndcg@10** | **0.4681** | |
|
|
| cosine_mrr@1 | 0.5244 | |
|
|
| cosine_mrr@5 | 0.6257 | |
|
|
| cosine_mrr@10 | 0.6341 | |
|
|
| cosine_map@10 | 0.3493 | |
|
|
| cosine_map@100 | 0.4065 | |
|
|
|
|
|
#### Graded IR |
|
|
|
|
|
* Dataset: `gr_evaluation` |
|
|
* Evaluated with <code>GradedIREvaluator.GradedIREvaluator</code> |
|
|
|
|
|
| Metric | Value | |
|
|
|:--------------------|:-----------| |
|
|
| cosine_accuracy@1 | 0.7088 | |
|
|
| cosine_accuracy@3 | 0.9038 | |
|
|
| cosine_accuracy@5 | 0.9463 | |
|
|
| cosine_accuracy@10 | 0.984 | |
|
|
| cosine_precision@1 | 0.7088 | |
|
|
| cosine_precision@3 | 0.6469 | |
|
|
| cosine_precision@5 | 0.6045 | |
|
|
| cosine_precision@10 | 0.5284 | |
|
|
| cosine_recall@1 | 0.1272 | |
|
|
| cosine_recall@3 | 0.3093 | |
|
|
| cosine_recall@5 | 0.449 | |
|
|
| cosine_recall@10 | 0.7099 | |
|
|
| cosine_ndcg@5 | 0.7127 | |
|
|
| **cosine_ndcg@10** | **0.7543** | |
|
|
| cosine_mrr@1 | 0.7088 | |
|
|
| cosine_mrr@5 | 0.8066 | |
|
|
| cosine_mrr@10 | 0.8118 | |
|
|
| cosine_map@10 | 0.6051 | |
|
|
| cosine_map@100 | 0.6944 | |
|
|
|
|
|
<!-- |
|
|
## Bias, Risks and Limitations |
|
|
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
|
--> |
|
|
|
|
|
<!-- |
|
|
### Recommendations |
|
|
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
|
--> |
|
|
|
|
|
### Framework Versions |
|
|
- Python: 3.11.12 |
|
|
- Sentence Transformers: 4.1.0 |
|
|
- Transformers: 4.51.3 |
|
|
- PyTorch: 2.6.0+cu124 |
|
|
- Accelerate: 1.6.0 |
|
|
- Datasets: 3.6.0 |
|
|
- Tokenizers: 0.21.1 |
|
|
|
|
|
## Citation |
|
|
|
|
|
### BibTeX |
|
|
|
|
|
#### Sentence Transformers |
|
|
```bibtex |
|
|
@inproceedings{reimers-2019-sentence-bert, |
|
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
|
month = "11", |
|
|
year = "2019", |
|
|
publisher = "Association for Computational Linguistics", |
|
|
url = "https://arxiv.org/abs/1908.10084", |
|
|
} |
|
|
``` |
|
|
|
|
|
#### MultipleNegativesRankingLoss |
|
|
```bibtex |
|
|
@misc{henderson2017efficient, |
|
|
title={Efficient Natural Language Response Suggestion for Smart Reply}, |
|
|
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, |
|
|
year={2017}, |
|
|
eprint={1705.00652}, |
|
|
archivePrefix={arXiv}, |
|
|
primaryClass={cs.CL} |
|
|
} |
|
|
``` |
|
|
|
|
|
<!-- |
|
|
## Glossary |
|
|
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
|
--> |
|
|
|
|
|
<!-- |
|
|
## Model Card Authors |
|
|
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
|
--> |
|
|
|
|
|
<!-- |
|
|
## Model Card Contact |
|
|
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
|
--> |