4ec954e2e463d3234bf73f917adf9261

This model is a fine-tuned version of albert/albert-large-v1 on the nyu-mll/glue dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7130
  • Data Size: 0.5
  • Epoch Runtime: 4.9249
  • Accuracy: 0.4298
  • F1 Macro: 0.4236
  • Rouge1: 0.4287
  • Rouge2: 0.0
  • Rougel: 0.4298
  • Rougelsum: 0.4298

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • total_train_batch_size: 32
  • total_eval_batch_size: 32
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: constant
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Data Size Epoch Runtime Accuracy F1 Macro Rouge1 Rouge2 Rougel Rougelsum
No log 0 0 0.6886 0 1.5319 0.5301 0.5144 0.5307 0.0 0.5295 0.5301
No log 1 114 0.7154 0.0078 2.3502 0.6651 0.3994 0.6657 0.0 0.6645 0.6651
No log 2 228 0.6584 0.0156 1.7106 0.6657 0.4030 0.6663 0.0 0.6657 0.6657
No log 3 342 0.6403 0.0312 1.8707 0.6651 0.3994 0.6657 0.0 0.6645 0.6651
0.0213 4 456 0.6611 0.0625 2.1084 0.6922 0.5515 0.6922 0.0 0.6916 0.6922
0.0213 5 570 0.6540 0.125 2.4783 0.6651 0.3994 0.6657 0.0 0.6645 0.6651
0.0213 6 684 0.6456 0.25 3.2542 0.6651 0.3994 0.6657 0.0 0.6645 0.6651
0.1581 7 798 0.7130 0.5 4.9249 0.4298 0.4236 0.4287 0.0 0.4298 0.4298

Framework versions

  • Transformers 4.57.0
  • Pytorch 2.8.0+cu128
  • Datasets 4.0.0
  • Tokenizers 0.22.1
Downloads last month
5
Safetensors
Model size
17.7M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for contemmcm/4ec954e2e463d3234bf73f917adf9261

Finetuned
(19)
this model

Evaluation results