a8b88bc01d48015c22420c4a7aae90ca
This model is a fine-tuned version of albert/albert-large-v1 on the nyu-mll/glue dataset. It achieves the following results on the evaluation set:
- Loss: 0.3651
- Data Size: 1.0
- Epoch Runtime: 184.9100
- Accuracy: 0.8744
- F1 Macro: 0.8744
- Rouge1: 0.8746
- Rouge2: 0.0
- Rougel: 0.8743
- Rougelsum: 0.8741
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 32
- total_eval_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: constant
- num_epochs: 50
Training results
| Training Loss | Epoch | Step | Validation Loss | Data Size | Epoch Runtime | Accuracy | F1 Macro | Rouge1 | Rouge2 | Rougel | Rougelsum |
|---|---|---|---|---|---|---|---|---|---|---|---|
| No log | 0 | 0 | 0.6891 | 0 | 3.4954 | 0.5303 | 0.4846 | 0.5303 | 0.0 | 0.5303 | 0.5305 |
| No log | 1 | 3273 | 0.5550 | 0.0078 | 6.2844 | 0.7414 | 0.7322 | 0.7414 | 0.0 | 0.7410 | 0.7412 |
| 0.0093 | 2 | 6546 | 0.4878 | 0.0156 | 6.4388 | 0.7719 | 0.7630 | 0.7715 | 0.0 | 0.7715 | 0.7717 |
| 0.4516 | 3 | 9819 | 0.3727 | 0.0312 | 9.2452 | 0.8518 | 0.8507 | 0.8518 | 0.0 | 0.8517 | 0.8517 |
| 0.4349 | 4 | 13092 | 0.3584 | 0.0625 | 14.9013 | 0.8526 | 0.8522 | 0.8529 | 0.0 | 0.8528 | 0.8526 |
| 0.3481 | 5 | 16365 | 0.3817 | 0.125 | 26.1150 | 0.8504 | 0.8497 | 0.8504 | 0.0 | 0.8504 | 0.8502 |
| 0.3393 | 6 | 19638 | 0.2990 | 0.25 | 48.0217 | 0.8809 | 0.8808 | 0.8811 | 0.0 | 0.8811 | 0.8807 |
| 0.326 | 7 | 22911 | 0.3134 | 0.5 | 93.4835 | 0.8717 | 0.8712 | 0.8717 | 0.0 | 0.8717 | 0.8715 |
| 0.3125 | 8.0 | 26184 | 0.3026 | 1.0 | 185.6783 | 0.8779 | 0.8778 | 0.8781 | 0.0 | 0.8781 | 0.8779 |
| 0.2648 | 9.0 | 29457 | 0.2835 | 1.0 | 185.8369 | 0.8866 | 0.8865 | 0.8864 | 0.0 | 0.8866 | 0.8864 |
| 0.2234 | 10.0 | 32730 | 0.2961 | 1.0 | 185.8549 | 0.8864 | 0.8863 | 0.8864 | 0.0 | 0.8862 | 0.8862 |
| 0.1967 | 11.0 | 36003 | 0.3656 | 1.0 | 185.2062 | 0.8844 | 0.8843 | 0.8844 | 0.0 | 0.8842 | 0.8844 |
| 0.1727 | 12.0 | 39276 | 0.3302 | 1.0 | 185.2051 | 0.8858 | 0.8858 | 0.8857 | 0.0 | 0.8855 | 0.8858 |
| 0.1363 | 13.0 | 42549 | 0.3651 | 1.0 | 184.9100 | 0.8744 | 0.8744 | 0.8746 | 0.0 | 0.8743 | 0.8741 |
Framework versions
- Transformers 4.57.0
- Pytorch 2.8.0+cu128
- Datasets 4.0.0
- Tokenizers 0.22.1
- Downloads last month
- 6
Model tree for contemmcm/a8b88bc01d48015c22420c4a7aae90ca
Base model
albert/albert-large-v1