d80397db0ea0d34eec1577aaae2d31cd
This model is a fine-tuned version of albert/albert-large-v1 on the contemmcm/clickbait dataset. It achieves the following results on the evaluation set:
- Loss: 0.2128
- Data Size: 1.0
- Epoch Runtime: 40.4139
- Accuracy: 0.9416
- F1 Macro: 0.9368
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 32
- total_eval_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: constant
- num_epochs: 50
Training results
| Training Loss | Epoch | Step | Validation Loss | Data Size | Epoch Runtime | Accuracy | F1 Macro |
|---|---|---|---|---|---|---|---|
| No log | 0 | 0 | 0.7052 | 0 | 3.4264 | 0.4809 | 0.4313 |
| No log | 1 | 650 | 0.3530 | 0.0078 | 3.9987 | 0.8951 | 0.8852 |
| No log | 2 | 1300 | 0.0785 | 0.0156 | 4.0945 | 0.9776 | 0.9765 |
| No log | 3 | 1950 | 0.1048 | 0.0312 | 4.7470 | 0.9686 | 0.9672 |
| No log | 4 | 2600 | 0.1221 | 0.0625 | 5.7612 | 0.9510 | 0.9471 |
| 0.0075 | 5 | 3250 | 0.0807 | 0.125 | 8.2096 | 0.9728 | 0.9710 |
| 0.0501 | 6 | 3900 | 0.0544 | 0.25 | 12.6979 | 0.9865 | 0.9858 |
| 0.0666 | 7 | 4550 | 0.0446 | 0.5 | 22.1560 | 0.9904 | 0.9898 |
| 0.6766 | 8.0 | 5200 | 0.6740 | 1.0 | 41.1326 | 0.6130 | 0.3801 |
| 0.6684 | 9.0 | 5850 | 0.6729 | 1.0 | 40.1185 | 0.6130 | 0.3801 |
| 0.5126 | 10.0 | 6500 | 0.4935 | 1.0 | 40.8441 | 0.7743 | 0.7167 |
| 0.2079 | 11.0 | 7150 | 0.2128 | 1.0 | 40.4139 | 0.9416 | 0.9368 |
Framework versions
- Transformers 4.57.0
- Pytorch 2.8.0+cu128
- Datasets 4.3.0
- Tokenizers 0.22.1
- Downloads last month
- 15
Model tree for contemmcm/d80397db0ea0d34eec1577aaae2d31cd
Base model
albert/albert-large-v1