HERBench / herbench_loader.py
DanBenAmi's picture
Initial commit: HERBench dataset core files
9e54dc1
raw
history blame
11.6 kB
"""
HERBench Dataset Loader for Hugging Face
This module provides a Hugging Face datasets loader for HERBench, a benchmark for
multi-evidence integration in video question answering.
Usage:
# Option 1: Load via Hugging Face datasets library
from datasets import load_dataset
dataset = load_dataset("DanBenAmi/HERBench")
print(dataset['test'][0])
# Option 2: Load locally
from datasets import load_dataset
dataset = load_dataset("path/to/HERBench/herbench_loader.py")
Example:
>>> from datasets import load_dataset
>>> dataset = load_dataset("DanBenAmi/HERBench")
>>> sample = dataset['test'][0]
>>> print(sample['question'])
>>> print(sample['choices'])
>>> print(sample['answer'])
For more information, visit:
- GitHub: https://github.com/DanBenAmi/HERBench
- Paper: https://arxiv.org/abs/XXXX.XXXXX (coming soon)
- Project Page: https://danbenami.github.io/herbench (coming soon)
"""
import json
from pathlib import Path
from typing import Dict, List, Optional
import datasets
_DESCRIPTION = """\
HERBench: A Benchmark for Multi-Evidence Integration in Video Question Answering
HERBench is a challenging benchmark designed to evaluate vision-language models on
multi-evidence integration in long videos. Unlike existing benchmarks where questions
can often be answered from single frames, HERBench enforces a High Evidential Requirement
(ER) where each question requires aggregating at least k ≥ 3 distinct, temporally
separated visual cues.
Key Features:
- 27,936 five-way multiple-choice questions (Full) or ~5,600 questions (Lite)
- 335 unique videos (Full) or ~67 videos (Lite)
- Average video length of 395 seconds (6.6 minutes)
- 12 compositional task types covering temporal, spatial, and causal reasoning
- Mean Minimum Required Frame-Set (MRFS) of 5.49
- Questions designed to prevent single-frame shortcuts
- Comprehensive evaluation of multi-evidence reasoning capabilities
Available in two versions:
- Full: 27,936 questions, 335 videos (~161 GB) - Complete benchmark
- Lite: ~5,600 questions, ~67 videos (~35 GB) - 20% subset for quick prototyping
The benchmark includes videos from diverse sources:
- WildTrack: Multi-camera pedestrian tracking scenes
- HD-EPIC: First-person egocentric videos of daily activities
- PersonPath22: Person tracking in various environments
- Movie Trailers: Narrative story understanding
Each question is carefully designed to require:
1. Multiple pieces of evidence (k ≥ 3 frames)
2. Temporal separation between evidence frames
3. Compositional reasoning across evidence
4. Integration of visual information from different moments
"""
_HOMEPAGE = "https://github.com/DanBenAmi/HERBench"
_LICENSE = "CC-BY-NC-SA-4.0"
_CITATION = """\
@article{herbench2025,
title={HERBench: A Benchmark for Multi-Evidence Integration in Video Question Answering},
author={Ben-Ami, Dan and Serussi, Gabriele and Cohen, Kobi and Baskin, Chaim},
journal={arXiv preprint arXiv:XXXX.XXXXX},
year={2025}
}
"""
_VERSION = "1.0.0"
class HERBenchConfig(datasets.BuilderConfig):
"""BuilderConfig for HERBench."""
def __init__(self, **kwargs):
"""BuilderConfig for HERBench.
Args:
**kwargs: keyword arguments forwarded to super.
"""
super(HERBenchConfig, self).__init__(**kwargs)
class HERBench(datasets.GeneratorBasedBuilder):
"""HERBench Dataset: Multi-Evidence Integration in Video QA."""
VERSION = datasets.Version(_VERSION)
BUILDER_CONFIGS = [
HERBenchConfig(
name="full",
version=VERSION,
description="Full HERBench dataset with all 27,936 questions and 335 videos (~161GB)",
),
HERBenchConfig(
name="lite",
version=VERSION,
description="HERBench-Lite: 20% subset with ~5,600 questions and ~67 videos (~35GB)",
),
]
DEFAULT_CONFIG_NAME = "full"
def _info(self):
"""Specify the datasets.DatasetInfo object."""
features = datasets.Features({
"question_id": datasets.Value("string"),
"video_id": datasets.Value("string"),
"video_path": datasets.Value("string"),
"question": datasets.Value("string"),
"choices": datasets.Sequence(datasets.Value("string")),
"answer": datasets.Value("string"),
"answer_index": datasets.Value("int32"),
"answer_text": datasets.Value("string"),
"task_type": datasets.Value("string"),
"metadata": datasets.Features({
"source_dataset": datasets.Value("string"),
"duration": datasets.Value("float32"),
"resolution": datasets.Value("string"),
"evidence_count": datasets.Value("int32"),
"difficulty": datasets.Value("string"),
}),
})
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
version=self.VERSION,
)
def _split_generators(self, dl_manager):
"""Return SplitGenerators."""
# Determine which annotation file to use based on config
if self.config.name == "lite":
annotations_file = "data/herbench_annotations_lite.json"
else:
annotations_file = "data/herbench_annotations.json"
# Download and extract data files
data_files = dl_manager.download({
"annotations": annotations_file,
"task_metadata": "data/task_metadata.json",
"video_metadata": "data/video_metadata.json",
})
return [
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"annotations_file": data_files["annotations"],
"task_metadata_file": data_files["task_metadata"],
"video_metadata_file": data_files["video_metadata"],
},
),
]
def _generate_examples(self, annotations_file, task_metadata_file, video_metadata_file):
"""Yield examples as (key, example) tuples."""
# Load annotations
with open(annotations_file, encoding="utf-8") as f:
annotations = json.load(f)
# Yield each annotation
for idx, annotation in enumerate(annotations):
# Ensure metadata exists
if "metadata" not in annotation:
annotation["metadata"] = {
"source_dataset": "unknown",
"duration": 0.0,
"resolution": "unknown",
"evidence_count": 0,
"difficulty": "unknown"
}
else:
# Ensure required metadata fields exist
metadata = annotation["metadata"]
if "source_dataset" not in metadata:
metadata["source_dataset"] = "unknown"
if "duration" not in metadata:
metadata["duration"] = 0.0
if "resolution" not in metadata:
metadata["resolution"] = "unknown"
if "evidence_count" not in metadata:
metadata["evidence_count"] = 0
if "difficulty" not in metadata:
metadata["difficulty"] = "unknown"
yield idx, {
"question_id": annotation.get("question_id", f"HER_{idx:06d}"),
"video_id": annotation.get("video_id", ""),
"video_path": annotation.get("video_path", ""),
"question": annotation.get("question", ""),
"choices": annotation.get("choices", []),
"answer": annotation.get("answer", ""),
"answer_index": int(annotation.get("answer_index", 0)),
"answer_text": annotation.get("answer_text", ""),
"task_type": annotation.get("task_type", "unknown"),
"metadata": annotation["metadata"],
}
# Example usage and helper functions
def load_herbench(cache_dir: Optional[str] = None) -> datasets.DatasetDict:
"""
Load HERBench dataset using Hugging Face datasets library.
Args:
cache_dir: Optional directory to cache the dataset.
Returns:
DatasetDict with 'test' split containing all questions.
Example:
>>> dataset = load_herbench()
>>> print(f"Total questions: {len(dataset['test'])}")
>>> print(dataset['test'][0])
"""
return datasets.load_dataset(
"DanBenAmi/HERBench",
cache_dir=cache_dir
)
def get_questions_by_task(dataset, task_type: str) -> List[Dict]:
"""
Filter questions by task type.
Args:
dataset: HERBench dataset or test split.
task_type: Task type to filter (e.g., 'temporal_reasoning').
Returns:
List of questions matching the task type.
Example:
>>> dataset = load_herbench()
>>> temporal_qs = get_questions_by_task(dataset['test'], 'temporal_reasoning')
>>> print(f"Temporal reasoning questions: {len(temporal_qs)}")
"""
if isinstance(dataset, datasets.DatasetDict):
dataset = dataset['test']
return [q for q in dataset if q['task_type'] == task_type]
def get_questions_by_video(dataset, video_id: str) -> List[Dict]:
"""
Get all questions for a specific video.
Args:
dataset: HERBench dataset or test split.
video_id: Video identifier.
Returns:
List of questions for the specified video.
Example:
>>> dataset = load_herbench()
>>> video_qs = get_questions_by_video(dataset['test'], 'cam2_segment_4_180s_240s')
>>> print(f"Questions for video: {len(video_qs)}")
"""
if isinstance(dataset, datasets.DatasetDict):
dataset = dataset['test']
return [q for q in dataset if q['video_id'] == video_id]
def print_sample(sample: Dict) -> None:
"""
Pretty print a sample from the dataset.
Args:
sample: A single sample from HERBench.
Example:
>>> dataset = load_herbench()
>>> print_sample(dataset['test'][0])
"""
duration = sample['metadata'].get('duration', 0.0)
print(f"Question ID: {sample['question_id']}")
print(f"Video: {sample['video_id']} ({duration:.1f}s)")
print(f"Resolution: {sample['metadata'].get('resolution', 'unknown')}")
print(f"Task: {sample['task_type']}")
print(f"\nQuestion: {sample['question']}")
print(f"\nChoices:")
for i, choice in enumerate(sample['choices']):
marker = "→" if i == sample['answer_index'] else " "
print(f" {marker} {choice}")
print(f"\nCorrect Answer: {sample['answer']} (index: {sample['answer_index']})")
if sample.get('answer_text'):
print(f"Answer Text: {sample['answer_text']}")
print(f"Source: {sample['metadata']['source_dataset']}")
print("-" * 60)
if __name__ == "__main__":
# Example usage when run as script
print("Loading HERBench dataset...")
dataset = load_herbench()
print(f"\nDataset loaded successfully!")
print(f"Total questions: {len(dataset['test'])}")
print(f"\nFirst sample:")
print_sample(dataset['test'][0])
# Show task distribution
from collections import Counter
task_counts = Counter(q['task_type'] for q in dataset['test'])
print(f"\nTask distribution:")
for task, count in task_counts.most_common():
print(f" {task}: {count}")