url
stringlengths
58
61
repository_url
stringclasses
1 value
labels_url
stringlengths
72
75
comments_url
stringlengths
67
70
events_url
stringlengths
65
68
html_url
stringlengths
48
51
id
int64
600M
3.43B
node_id
stringlengths
18
24
number
int64
2
7.78k
title
stringlengths
1
290
user
dict
labels
listlengths
0
4
state
stringclasses
2 values
locked
bool
1 class
assignee
dict
assignees
listlengths
0
4
milestone
dict
comments
listlengths
0
30
created_at
stringdate
2020-04-14 18:18:51
2025-09-18 08:25:34
updated_at
stringdate
2020-04-29 09:23:05
2025-09-22 08:47:53
closed_at
stringlengths
20
20
author_association
stringclasses
4 values
type
null
active_lock_reason
null
draft
bool
0 classes
pull_request
dict
body
stringlengths
0
228k
closed_by
dict
reactions
dict
timeline_url
stringlengths
67
70
performed_via_github_app
null
state_reason
stringclasses
4 values
sub_issues_summary
dict
issue_dependencies_summary
dict
is_pull_request
bool
1 class
https://api.github.com/repos/huggingface/datasets/issues/7686
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7686/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7686/comments
https://api.github.com/repos/huggingface/datasets/issues/7686/events
https://github.com/huggingface/datasets/issues/7686
3,237,201,090
I_kwDODunzps7A88TC
7,686
load_dataset does not check .no_exist files in the hub cache
{ "avatar_url": "https://avatars.githubusercontent.com/u/3627235?v=4", "events_url": "https://api.github.com/users/jmaccarl/events{/privacy}", "followers_url": "https://api.github.com/users/jmaccarl/followers", "following_url": "https://api.github.com/users/jmaccarl/following{/other_user}", "gists_url": "https://api.github.com/users/jmaccarl/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/jmaccarl", "id": 3627235, "login": "jmaccarl", "node_id": "MDQ6VXNlcjM2MjcyMzU=", "organizations_url": "https://api.github.com/users/jmaccarl/orgs", "received_events_url": "https://api.github.com/users/jmaccarl/received_events", "repos_url": "https://api.github.com/users/jmaccarl/repos", "site_admin": false, "starred_url": "https://api.github.com/users/jmaccarl/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/jmaccarl/subscriptions", "type": "User", "url": "https://api.github.com/users/jmaccarl", "user_view_type": "public" }
[]
open
false
null
[]
null
[]
2025-07-16T20:04:00Z
2025-07-16T20:04:00Z
null
NONE
null
null
null
null
### Describe the bug I'm not entirely sure if this should be submitted as a bug in the `datasets` library or the `huggingface_hub` library, given it could be fixed at different levels of the stack. The fundamental issue is that the `load_datasets` api doesn't use the `.no_exist` files in the hub cache unlike other wrapper APIs that do. This is because the `utils.file_utils.cached_path` used directly calls `hf_hub_download` instead of using `file_download.try_to_load_from_cache` from `huggingface_hub` (see `transformers` library `utils.hub.cached_files` for one alternate example). This results in unnecessary metadata HTTP requests occurring for files that don't exist on every call. It won't generate the .no_exist cache files, nor will it use them. ### Steps to reproduce the bug Run the following snippet as one example (setting cache dirs to clean paths for clarity) `env HF_HOME=~/local_hf_hub python repro.py` ``` from datasets import load_dataset import huggingface_hub # monkeypatch to print out metadata requests being made original_get_hf_file_metadata = huggingface_hub.file_download.get_hf_file_metadata def get_hf_file_metadata_wrapper(*args, **kwargs): print("File metadata request made (get_hf_file_metadata):", args, kwargs) return original_get_hf_file_metadata(*args, **kwargs) # Apply the patch huggingface_hub.file_download.get_hf_file_metadata = get_hf_file_metadata_wrapper dataset = load_dataset( "Salesforce/wikitext", "wikitext-2-v1", split="test", trust_remote_code=True, cache_dir="~/local_datasets", revision="b08601e04326c79dfdd32d625aee71d232d685c3", ) ``` This may be called over and over again, and you will see the same calls for files that don't exist: ``` File metadata request made (get_hf_file_metadata): () {'url': 'https://huggingface.co/datasets/Salesforce/wikitext/resolve/b08601e04326c79dfdd32d625aee71d232d685c3/wikitext.py', 'proxies': None, 'timeout': 10, 'headers': {'user-agent': 'datasets/3.6.0; hf_hub/0.33.2; python/3.12.11; torch/2.7.0; huggingface_hub/0.33.2; pyarrow/20.0.0; jax/0.5.3'}, 'token': None} File metadata request made (get_hf_file_metadata): () {'url': 'https://huggingface.co/datasets/Salesforce/wikitext/resolve/b08601e04326c79dfdd32d625aee71d232d685c3/.huggingface.yaml', 'proxies': None, 'timeout': 10, 'headers': {'user-agent': 'datasets/3.6.0; hf_hub/0.33.2; python/3.12.11; torch/2.7.0; huggingface_hub/0.33.2; pyarrow/20.0.0; jax/0.5.3'}, 'token': None} File metadata request made (get_hf_file_metadata): () {'url': 'https://huggingface.co/datasets/Salesforce/wikitext/resolve/b08601e04326c79dfdd32d625aee71d232d685c3/dataset_infos.json', 'proxies': None, 'timeout': 10, 'headers': {'user-agent': 'datasets/3.6.0; hf_hub/0.33.2; python/3.12.11; torch/2.7.0; huggingface_hub/0.33.2; pyarrow/20.0.0; jax/0.5.3'}, 'token': None} ``` And you can see that the .no_exist folder is never created ``` $ ls ~/local_hf_hub/hub/datasets--Salesforce--wikitext/ blobs refs snapshots ``` ### Expected behavior The expected behavior is for the print "File metadata request made" to stop after the first call, and for .no_exist directory & files to be populated under ~/local_hf_hub/hub/datasets--Salesforce--wikitext/ ### Environment info - `datasets` version: 3.6.0 - Platform: Linux-6.5.13-65-650-4141-22041-coreweave-amd64-85c45edc-x86_64-with-glibc2.35 - Python version: 3.12.11 - `huggingface_hub` version: 0.33.2 - PyArrow version: 20.0.0 - Pandas version: 2.3.1 - `fsspec` version: 2024.9.0
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7686/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7686/timeline
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7685
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7685/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7685/comments
https://api.github.com/repos/huggingface/datasets/issues/7685/events
https://github.com/huggingface/datasets/issues/7685
3,236,979,340
I_kwDODunzps7A8GKM
7,685
Inconsistent range request behavior for parquet REST api
{ "avatar_url": "https://avatars.githubusercontent.com/u/21327470?v=4", "events_url": "https://api.github.com/users/universalmind303/events{/privacy}", "followers_url": "https://api.github.com/users/universalmind303/followers", "following_url": "https://api.github.com/users/universalmind303/following{/other_user}", "gists_url": "https://api.github.com/users/universalmind303/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/universalmind303", "id": 21327470, "login": "universalmind303", "node_id": "MDQ6VXNlcjIxMzI3NDcw", "organizations_url": "https://api.github.com/users/universalmind303/orgs", "received_events_url": "https://api.github.com/users/universalmind303/received_events", "repos_url": "https://api.github.com/users/universalmind303/repos", "site_admin": false, "starred_url": "https://api.github.com/users/universalmind303/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/universalmind303/subscriptions", "type": "User", "url": "https://api.github.com/users/universalmind303", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "This is a weird bug, is it a range that is supposed to be satisfiable ? I mean, is it on the boundraries ?\n\nLet me know if you'r e still having the issue, in case it was just a transient bug", "@lhoestq yes the ranges are supposed to be satisfiable, and _sometimes_ they are. \n\nThe head requests show that it does in fact accept a byte range. \n\n```\n> curl -IL \"https://huggingface.co/api/datasets/HuggingFaceTB/smoltalk2/parquet/Mid/Llama_Nemotron_Post_Training_Dataset_reasoning_r1/0.parquet\" \n\n\nHTTP/2 200\ncontent-length: 218006142\ncontent-disposition: inline; filename*=UTF-8''0000.parquet; filename=\"0000.parquet\";\ncache-control: public, max-age=31536000\netag: \"cf8a3a5665cf8b2ff667fb5236a1e5cb13c7582955f9533c88e1387997ef3af9\"\naccess-control-allow-origin: *\naccess-control-allow-headers: Content-Range, Content-Type, Content-Disposition, ETag\naccess-control-expose-headers: Accept-Ranges, Content-Range, Content-Type, Content-Disposition, ETag, X-Cache\naccept-ranges: bytes\nx-request-id: 01K11493PRMCZKVSNCBF1EX1WJ\ndate: Fri, 25 Jul 2025 15:47:25 GMT\nx-cache: Hit from cloudfront\nvia: 1.1 ad637ff39738449b56ab4eac4b02cbf4.cloudfront.net (CloudFront)\nx-amz-cf-pop: MSP50-P2\nx-amz-cf-id: ti1Ze3e0knGMl0PkeZ_F_snZNZe4007D9uT502MkGjM4NWPYWy13wA==\nage: 15\ncontent-security-policy: default-src 'none'; sandbox\n```\n\nand as I mentioned, _sometimes_ it satisfies the request \n\n```\n* Request completely sent off\n< HTTP/2 206\n< content-length: 131072\n< content-disposition: inline; filename*=UTF-8''0000.parquet; filename=\"0000.parquet\";\n< cache-control: public, max-age=31536000\n< etag: \"cf8a3a5665cf8b2ff667fb5236a1e5cb13c7582955f9533c88e1387997ef3af9\"\n< access-control-allow-origin: *\n< access-control-allow-headers: Content-Range, Content-Type, Content-Disposition, ETag\n< access-control-expose-headers: Accept-Ranges, Content-Range, Content-Type, Content-Disposition, ETag, X-Cache\n< x-request-id: 01K1146P5PNC4D2XD348C78BTC\n< date: Fri, 25 Jul 2025 15:46:06 GMT\n< x-cache: Hit from cloudfront\n< via: 1.1 990606ab91bf6503d073ad5fee40784c.cloudfront.net (CloudFront)\n< x-amz-cf-pop: MSP50-P2\n< x-amz-cf-id: l58ghqEzNZn4eo4IRNl76fOFrHTk_TJKeLi0-g8YYHmq7Oh3s8sXnQ==\n< age: 248\n< content-security-policy: default-src 'none'; sandbox\n< content-range: bytes 217875070-218006141/218006142\n```\n\nbut more often than not, it returns a 416\n```\n* Request completely sent off\n< HTTP/2 416\n< content-type: text/html\n< content-length: 49\n< server: CloudFront\n< date: Fri, 25 Jul 2025 15:51:08 GMT\n< expires: Fri, 25 Jul 2025 15:51:08 GMT\n< content-range: bytes */177\n< x-cache: Error from cloudfront\n< via: 1.1 65ba38c8dc30018660c405d1f32ef3a0.cloudfront.net (CloudFront)\n< x-amz-cf-pop: MSP50-P1\n< x-amz-cf-id: 1t1Att_eqiO-LmlnnaO-cCPoh6G2AIQDaklhS08F_revXNqijMpseA==\n```\n\n\n", "As a workaround, adding a unique parameter to the url avoids the CDN caching and returns the correct result. \n\n```\n❯ curl -v -L -H \"Range: bytes=217875070-218006142\" -o output.parquet \"https://huggingface.co/api/datasets/HuggingFaceTB/smoltalk2/parquet/Mid/Llama_Nemotron_Post_Training_Dataset_reasoning_r1/0.parquet?cachebust=<SOMEUNIQUESTRING>\" \n``` \n", "@lhoestq Is there any update on this? We (daft) have been getting more reports of this when users are reading huggingface datasets. ", "> [@lhoestq](https://github.com/lhoestq) Is there any update on this? We (daft) have been getting more reports of this when users are reading huggingface datasets.\n\nHello, \nWe have temporarily disabled the caching rule that could be the origin of this issue. Meanwhile, the problem is still being investigated by us" ]
2025-07-16T18:39:44Z
2025-08-11T08:16:54Z
null
NONE
null
null
null
null
### Describe the bug First off, I do apologize if this is not the correct repo for submitting this issue. Please direct me to another one if it's more appropriate elsewhere. The datasets rest api is inconsistently giving `416 Range Not Satisfiable` when using a range request to get portions of the parquet files. More often than not, I am seeing 416, but other times for an identical request, it gives me the data along with `206 Partial Content` as expected. ### Steps to reproduce the bug repeating this request multiple times will return either 416 or 206. ```sh $ curl -v -L -H "Range: bytes=217875070-218006142" -o output.parquet "https://huggingface.co/api/datasets/HuggingFaceTB/smoltalk2/parquet/Mid/Llama_Nemotron_Post_Training_Dataset_reasoning_r1/0.parquet" ``` Note: this is not limited to just the above file, I tried with many different datasets and am able to consistently reproduce issue across multiple datasets. when the 416 is returned, I get the following headers ``` < HTTP/2 416 < content-type: text/html < content-length: 49 < server: CloudFront < date: Wed, 16 Jul 2025 14:58:43 GMT < expires: Wed, 16 Jul 2025 14:58:43 GMT < content-range: bytes */177 < x-cache: Error from cloudfront < via: 1.1 873527676a354c5998cad133525df9c0.cloudfront.net (CloudFront) < ``` this suggests to me that there is likely a CDN/caching/routing issue happening and the request is not getting routed properly. Full verbose output via curl. <details> ❯ curl -v -L -H "Range: bytes=217875070-218006142" -o output.parquet "https://huggingface.co/api/datasets/HuggingFaceTB/smoltalk2/parquet/Mid/Llama_Nemotron_Post_Training_Dataset_reasoning_r1/0.parquet" % Total % Received % Xferd Average Speed Time Time Time Current Dload Upload Total Spent Left Speed 0 0 0 0 0 0 0 0 --:--:-- --:--:-- --:--:-- 0* Host huggingface.co:443 was resolved. * IPv6: (none) * IPv4: 18.160.102.96, 18.160.102.110, 18.160.102.4, 18.160.102.86 * Trying 18.160.102.96:443... * Connected to huggingface.co (18.160.102.96) port 443 * ALPN: curl offers h2,http/1.1 * (304) (OUT), TLS handshake, Client hello (1): } [319 bytes data] * CAfile: /etc/ssl/cert.pem * CApath: none * (304) (IN), TLS handshake, Server hello (2): { [122 bytes data] * (304) (IN), TLS handshake, Unknown (8): { [19 bytes data] * (304) (IN), TLS handshake, Certificate (11): { [3821 bytes data] * (304) (IN), TLS handshake, CERT verify (15): { [264 bytes data] * (304) (IN), TLS handshake, Finished (20): { [36 bytes data] * (304) (OUT), TLS handshake, Finished (20): } [36 bytes data] * SSL connection using TLSv1.3 / AEAD-AES128-GCM-SHA256 / [blank] / UNDEF * ALPN: server accepted h2 * Server certificate: * subject: CN=huggingface.co * start date: Apr 13 00:00:00 2025 GMT * expire date: May 12 23:59:59 2026 GMT * subjectAltName: host "huggingface.co" matched cert's "huggingface.co" * issuer: C=US; O=Amazon; CN=Amazon RSA 2048 M02 * SSL certificate verify ok. * using HTTP/2 * [HTTP/2] [1] OPENED stream for https://huggingface.co/api/datasets/HuggingFaceTB/smoltalk2/parquet/Mid/Llama_Nemotron_Post_Training_Dataset_reasoning_r1/0.parquet * [HTTP/2] [1] [:method: GET] * [HTTP/2] [1] [:scheme: https] * [HTTP/2] [1] [:authority: huggingface.co] * [HTTP/2] [1] [:path: /api/datasets/HuggingFaceTB/smoltalk2/parquet/Mid/Llama_Nemotron_Post_Training_Dataset_reasoning_r1/0.parquet] * [HTTP/2] [1] [user-agent: curl/8.7.1] * [HTTP/2] [1] [accept: */*] * [HTTP/2] [1] [range: bytes=217875070-218006142] > GET /api/datasets/HuggingFaceTB/smoltalk2/parquet/Mid/Llama_Nemotron_Post_Training_Dataset_reasoning_r1/0.parquet HTTP/2 > Host: huggingface.co > User-Agent: curl/8.7.1 > Accept: */* > Range: bytes=217875070-218006142 > * Request completely sent off < HTTP/2 416 < content-type: text/html < content-length: 49 < server: CloudFront < date: Wed, 16 Jul 2025 14:58:41 GMT < expires: Wed, 16 Jul 2025 14:58:41 GMT < content-range: bytes */177 < x-cache: Error from cloudfront < via: 1.1 e2f1bed2f82641d6d5439eac20a790ba.cloudfront.net (CloudFront) < x-amz-cf-pop: MSP50-P1 < x-amz-cf-id: Mo8hn-EZLJqE_hoBday8DdhmVXhV3v9-Wg-EEHI6gX_fNlkanVIUBA== < { [49 bytes data] 100 49 100 49 0 0 2215 0 --:--:-- --:--:-- --:--:-- 2227 * Connection #0 to host huggingface.co left intact (.venv) Daft main*​* ≡❯ curl -v -L -H "Range: bytes=217875070-218006142" -o output.parquet "https://huggingface.co/api/datasets/HuggingFaceTB/smoltalk2/parquet/Mid/Llama_Nemotron_Post_Training_Dataset_reasoning_r1/0.parquet" % Total % Received % Xferd Average Speed Time Time Time Current Dload Upload Total Spent Left Speed 0 0 0 0 0 0 0 0 --:--:-- --:--:-- --:--:-- 0* Host huggingface.co:443 was resolved. * IPv6: (none) * IPv4: 18.160.102.96, 18.160.102.110, 18.160.102.4, 18.160.102.86 * Trying 18.160.102.96:443... * Connected to huggingface.co (18.160.102.96) port 443 * ALPN: curl offers h2,http/1.1 * (304) (OUT), TLS handshake, Client hello (1): } [319 bytes data] * CAfile: /etc/ssl/cert.pem * CApath: none * (304) (IN), TLS handshake, Server hello (2): { [122 bytes data] * (304) (IN), TLS handshake, Unknown (8): { [19 bytes data] * (304) (IN), TLS handshake, Certificate (11): { [3821 bytes data] * (304) (IN), TLS handshake, CERT verify (15): { [264 bytes data] * (304) (IN), TLS handshake, Finished (20): { [36 bytes data] * (304) (OUT), TLS handshake, Finished (20): } [36 bytes data] * SSL connection using TLSv1.3 / AEAD-AES128-GCM-SHA256 / [blank] / UNDEF * ALPN: server accepted h2 * Server certificate: * subject: CN=huggingface.co * start date: Apr 13 00:00:00 2025 GMT * expire date: May 12 23:59:59 2026 GMT * subjectAltName: host "huggingface.co" matched cert's "huggingface.co" * issuer: C=US; O=Amazon; CN=Amazon RSA 2048 M02 * SSL certificate verify ok. * using HTTP/2 * [HTTP/2] [1] OPENED stream for https://huggingface.co/api/datasets/HuggingFaceTB/smoltalk2/parquet/Mid/Llama_Nemotron_Post_Training_Dataset_reasoning_r1/0.parquet * [HTTP/2] [1] [:method: GET] * [HTTP/2] [1] [:scheme: https] * [HTTP/2] [1] [:authority: huggingface.co] * [HTTP/2] [1] [:path: /api/datasets/HuggingFaceTB/smoltalk2/parquet/Mid/Llama_Nemotron_Post_Training_Dataset_reasoning_r1/0.parquet] * [HTTP/2] [1] [user-agent: curl/8.7.1] * [HTTP/2] [1] [accept: */*] * [HTTP/2] [1] [range: bytes=217875070-218006142] > GET /api/datasets/HuggingFaceTB/smoltalk2/parquet/Mid/Llama_Nemotron_Post_Training_Dataset_reasoning_r1/0.parquet HTTP/2 > Host: huggingface.co > User-Agent: curl/8.7.1 > Accept: */* > Range: bytes=217875070-218006142 > * Request completely sent off < HTTP/2 416 < content-type: text/html < content-length: 49 < server: CloudFront < date: Wed, 16 Jul 2025 14:58:42 GMT < expires: Wed, 16 Jul 2025 14:58:42 GMT < content-range: bytes */177 < x-cache: Error from cloudfront < via: 1.1 bb352451e1eacf85f8786ee3ecd07eca.cloudfront.net (CloudFront) < x-amz-cf-pop: MSP50-P1 < x-amz-cf-id: 9xy-CX9KvlS8Ye4eFr8jXMDobZHFkvdyvkLJGmK_qiwZQywCCwfq7Q== < { [49 bytes data] 100 49 100 49 0 0 2381 0 --:--:-- --:--:-- --:--:-- 2450 * Connection #0 to host huggingface.co left intact (.venv) Daft main*​* ≡❯ curl -v -L -H "Range: bytes=217875070-218006142" -o output.parquet "https://huggingface.co/api/datasets/HuggingFaceTB/smoltalk2/parquet/Mid/Llama_Nemotron_Post_Training_Dataset_reasoning_r1/0.parquet" % Total % Received % Xferd Average Speed Time Time Time Current Dload Upload Total Spent Left Speed 0 0 0 0 0 0 0 0 --:--:-- --:--:-- --:--:-- 0* Host huggingface.co:443 was resolved. * IPv6: (none) * IPv4: 18.160.102.96, 18.160.102.110, 18.160.102.4, 18.160.102.86 * Trying 18.160.102.96:443... * Connected to huggingface.co (18.160.102.96) port 443 * ALPN: curl offers h2,http/1.1 * (304) (OUT), TLS handshake, Client hello (1): } [319 bytes data] * CAfile: /etc/ssl/cert.pem * CApath: none * (304) (IN), TLS handshake, Server hello (2): { [122 bytes data] * (304) (IN), TLS handshake, Unknown (8): { [19 bytes data] * (304) (IN), TLS handshake, Certificate (11): { [3821 bytes data] * (304) (IN), TLS handshake, CERT verify (15): { [264 bytes data] * (304) (IN), TLS handshake, Finished (20): { [36 bytes data] * (304) (OUT), TLS handshake, Finished (20): } [36 bytes data] * SSL connection using TLSv1.3 / AEAD-AES128-GCM-SHA256 / [blank] / UNDEF * ALPN: server accepted h2 * Server certificate: * subject: CN=huggingface.co * start date: Apr 13 00:00:00 2025 GMT * expire date: May 12 23:59:59 2026 GMT * subjectAltName: host "huggingface.co" matched cert's "huggingface.co" * issuer: C=US; O=Amazon; CN=Amazon RSA 2048 M02 * SSL certificate verify ok. * using HTTP/2 * [HTTP/2] [1] OPENED stream for https://huggingface.co/api/datasets/HuggingFaceTB/smoltalk2/parquet/Mid/Llama_Nemotron_Post_Training_Dataset_reasoning_r1/0.parquet * [HTTP/2] [1] [:method: GET] * [HTTP/2] [1] [:scheme: https] * [HTTP/2] [1] [:authority: huggingface.co] * [HTTP/2] [1] [:path: /api/datasets/HuggingFaceTB/smoltalk2/parquet/Mid/Llama_Nemotron_Post_Training_Dataset_reasoning_r1/0.parquet] * [HTTP/2] [1] [user-agent: curl/8.7.1] * [HTTP/2] [1] [accept: */*] * [HTTP/2] [1] [range: bytes=217875070-218006142] > GET /api/datasets/HuggingFaceTB/smoltalk2/parquet/Mid/Llama_Nemotron_Post_Training_Dataset_reasoning_r1/0.parquet HTTP/2 > Host: huggingface.co > User-Agent: curl/8.7.1 > Accept: */* > Range: bytes=217875070-218006142 > * Request completely sent off < HTTP/2 416 < content-type: text/html < content-length: 49 < server: CloudFront < date: Wed, 16 Jul 2025 14:58:43 GMT < expires: Wed, 16 Jul 2025 14:58:43 GMT < content-range: bytes */177 < x-cache: Error from cloudfront < via: 1.1 873527676a354c5998cad133525df9c0.cloudfront.net (CloudFront) < x-amz-cf-pop: MSP50-P1 < x-amz-cf-id: wtBgwY4u4YJ2pD1ovM8UV770UiJoqWfs7i7VzschDyoLv5g7swGGmw== < { [49 bytes data] 100 49 100 49 0 0 2273 0 --:--:-- --:--:-- --:--:-- 2333 * Connection #0 to host huggingface.co left intact (.venv) Daft main*​* ≡❯ curl -v -L -H "Range: bytes=217875070-218006142" -o output.parquet "https://huggingface.co/api/datasets/HuggingFaceTB/smoltalk2/parquet/Mid/Llama_Nemotron_Post_Training_Dataset_reasoning_r1/0.parquet" % Total % Received % Xferd Average Speed Time Time Time Current Dload Upload Total Spent Left Speed 0 0 0 0 0 0 0 0 --:--:-- --:--:-- --:--:-- 0* Host huggingface.co:443 was resolved. * IPv6: (none) * IPv4: 18.160.102.96, 18.160.102.110, 18.160.102.4, 18.160.102.86 * Trying 18.160.102.96:443... * Connected to huggingface.co (18.160.102.96) port 443 * ALPN: curl offers h2,http/1.1 * (304) (OUT), TLS handshake, Client hello (1): } [319 bytes data] * CAfile: /etc/ssl/cert.pem * CApath: none * (304) (IN), TLS handshake, Server hello (2): { [122 bytes data] * (304) (IN), TLS handshake, Unknown (8): { [19 bytes data] * (304) (IN), TLS handshake, Certificate (11): { [3821 bytes data] * (304) (IN), TLS handshake, CERT verify (15): { [264 bytes data] * (304) (IN), TLS handshake, Finished (20): { [36 bytes data] * (304) (OUT), TLS handshake, Finished (20): } [36 bytes data] * SSL connection using TLSv1.3 / AEAD-AES128-GCM-SHA256 / [blank] / UNDEF * ALPN: server accepted h2 * Server certificate: * subject: CN=huggingface.co * start date: Apr 13 00:00:00 2025 GMT * expire date: May 12 23:59:59 2026 GMT * subjectAltName: host "huggingface.co" matched cert's "huggingface.co" * issuer: C=US; O=Amazon; CN=Amazon RSA 2048 M02 * SSL certificate verify ok. * using HTTP/2 * [HTTP/2] [1] OPENED stream for https://huggingface.co/api/datasets/HuggingFaceTB/smoltalk2/parquet/Mid/Llama_Nemotron_Post_Training_Dataset_reasoning_r1/0.parquet * [HTTP/2] [1] [:method: GET] * [HTTP/2] [1] [:scheme: https] * [HTTP/2] [1] [:authority: huggingface.co] * [HTTP/2] [1] [:path: /api/datasets/HuggingFaceTB/smoltalk2/parquet/Mid/Llama_Nemotron_Post_Training_Dataset_reasoning_r1/0.parquet] * [HTTP/2] [1] [user-agent: curl/8.7.1] * [HTTP/2] [1] [accept: */*] * [HTTP/2] [1] [range: bytes=217875070-218006142] > GET /api/datasets/HuggingFaceTB/smoltalk2/parquet/Mid/Llama_Nemotron_Post_Training_Dataset_reasoning_r1/0.parquet HTTP/2 > Host: huggingface.co > User-Agent: curl/8.7.1 > Accept: */* > Range: bytes=217875070-218006142 > * Request completely sent off < HTTP/2 302 < content-type: text/plain; charset=utf-8 < content-length: 177 < location: https://huggingface.co/datasets/HuggingFaceTB/smoltalk2/resolve/refs%2Fconvert%2Fparquet/Mid/Llama_Nemotron_Post_Training_Dataset_reasoning_r1/0000.parquet < date: Wed, 16 Jul 2025 14:58:44 GMT < x-powered-by: huggingface-moon < cross-origin-opener-policy: same-origin < referrer-policy: strict-origin-when-cross-origin < x-request-id: Root=1-6877be24-476860f03849cb1a1570c9d8 < access-control-allow-origin: https://huggingface.co < access-control-expose-headers: X-Repo-Commit,X-Request-Id,X-Error-Code,X-Error-Message,X-Total-Count,ETag,Link,Accept-Ranges,Content-Range,X-Linked-Size,X-Linked-ETag,X-Xet-Hash < set-cookie: token=; Path=/; Expires=Thu, 01 Jan 1970 00:00:00 GMT; Secure; SameSite=None < set-cookie: token=; Domain=huggingface.co; Path=/; Expires=Thu, 01 Jan 1970 00:00:00 GMT; Secure; SameSite=Lax < x-cache: Miss from cloudfront < via: 1.1 dd5af138aa8a11d8a70d5ef690ad1a2a.cloudfront.net (CloudFront) < x-amz-cf-pop: MSP50-P1 < x-amz-cf-id: xuSi0X5RpH1OZqQOM8gGQLQLU8eOM6Gbkk-bgIX_qBnTTaa1VNkExA== < * Ignoring the response-body 100 177 100 177 0 0 2021 0 --:--:-- --:--:-- --:--:-- 2034 * Connection #0 to host huggingface.co left intact * Issue another request to this URL: 'https://huggingface.co/datasets/HuggingFaceTB/smoltalk2/resolve/refs%2Fconvert%2Fparquet/Mid/Llama_Nemotron_Post_Training_Dataset_reasoning_r1/0000.parquet' * Found bundle for host: 0x600002d54570 [can multiplex] * Re-using existing connection with host huggingface.co * [HTTP/2] [3] OPENED stream for https://huggingface.co/datasets/HuggingFaceTB/smoltalk2/resolve/refs%2Fconvert%2Fparquet/Mid/Llama_Nemotron_Post_Training_Dataset_reasoning_r1/0000.parquet * [HTTP/2] [3] [:method: GET] * [HTTP/2] [3] [:scheme: https] * [HTTP/2] [3] [:authority: huggingface.co] * [HTTP/2] [3] [:path: /datasets/HuggingFaceTB/smoltalk2/resolve/refs%2Fconvert%2Fparquet/Mid/Llama_Nemotron_Post_Training_Dataset_reasoning_r1/0000.parquet] * [HTTP/2] [3] [user-agent: curl/8.7.1] * [HTTP/2] [3] [accept: */*] * [HTTP/2] [3] [range: bytes=217875070-218006142] > GET /datasets/HuggingFaceTB/smoltalk2/resolve/refs%2Fconvert%2Fparquet/Mid/Llama_Nemotron_Post_Training_Dataset_reasoning_r1/0000.parquet HTTP/2 > Host: huggingface.co > User-Agent: curl/8.7.1 > Accept: */* > Range: bytes=217875070-218006142 > * Request completely sent off < HTTP/2 302 < content-type: text/plain; charset=utf-8 < content-length: 1317 < location: https://cas-bridge.xethub.hf.co/xet-bridge-us/686fc33898943c873b45c9a0/cf8a3a5665cf8b2ff667fb5236a1e5cb13c7582955f9533c88e1387997ef3af9?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=cas%2F20250716%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20250716T145416Z&X-Amz-Expires=3600&X-Amz-Signature=21a15b50740d73fd8ce82d5105733ca067d2e612ada22570e09e93ebcc7f8842&X-Amz-SignedHeaders=host&X-Xet-Cas-Uid=public&response-content-disposition=inline%3B+filename*%3DUTF-8%27%270000.parquet%3B+filename%3D%220000.parquet%22%3B&x-id=GetObject&Expires=1752681256&Policy=eyJTdGF0ZW1lbnQiOlt7IkNvbmRpdGlvbiI6eyJEYXRlTGVzc1RoYW4iOnsiQVdTOkVwb2NoVGltZSI6MTc1MjY4MTI1Nn19LCJSZXNvdXJjZSI6Imh0dHBzOi8vY2FzLWJyaWRnZS54ZXRodWIuaGYuY28veGV0LWJyaWRnZS11cy82ODZmYzMzODk4OTQzYzg3M2I0NWM5YTAvY2Y4YTNhNTY2NWNmOGIyZmY2NjdmYjUyMzZhMWU1Y2IxM2M3NTgyOTU1Zjk1MzNjODhlMTM4Nzk5N2VmM2FmOSoifV19&Signature=Tl3xorJ-7yaWvG6Y1AhhRlV2Wko9QpoK1tdPOfNZaRbHo%7EdaAkJRJfcLAYD5YzozfHWBZMLlJsaMPJ1MAne21nr5%7E737sE6yLfBwHdP3ZFZhgrLsN%7EvkIWK2GYX543qTg-pVsf3it92w1oWyoyYNQ9srxLfEIuG2AKV2Nu3Ejl7S%7EaAq4Gv4jNemvRTLBFGgYPdUeuavudl4OD4RGkSGTnpzh-P-OBk5WvgpdZZnbb1cRAP73tFHsPDX4%7ETfQIor109G%7E0TB3Jq0wopO9WV0sMQyQs9peZc6bxONiTxb9aHM4yNvWNbVGtlPuC6YS4c9T1e9%7EehdgU4sDOI%7EhpaCvg__&Key-Pair-Id=K2L8F4GPSG1IFC < date: Wed, 16 Jul 2025 14:58:44 GMT < x-powered-by: huggingface-moon < cross-origin-opener-policy: same-origin < referrer-policy: strict-origin-when-cross-origin < x-request-id: Root=1-6877be24-4f628b292dc8a7a5339c41d3 < access-control-allow-origin: https://huggingface.co < vary: Origin, Accept < access-control-expose-headers: X-Repo-Commit,X-Request-Id,X-Error-Code,X-Error-Message,X-Total-Count,ETag,Link,Accept-Ranges,Content-Range,X-Linked-Size,X-Linked-ETag,X-Xet-Hash < set-cookie: token=; Path=/; Expires=Thu, 01 Jan 1970 00:00:00 GMT; Secure; SameSite=None < set-cookie: token=; Domain=huggingface.co; Path=/; Expires=Thu, 01 Jan 1970 00:00:00 GMT; Secure; SameSite=Lax < x-repo-commit: 712df366ffbc959d9f4279bf2da579230b7ca5d8 < accept-ranges: bytes < x-linked-size: 218006142 < x-linked-etag: "01736bf26d0046ddec4ab8900fba3f0dc6500b038314b44d0edb73a7c88dec07" < x-xet-hash: cf8a3a5665cf8b2ff667fb5236a1e5cb13c7582955f9533c88e1387997ef3af9 < link: <https://huggingface.co/api/datasets/HuggingFaceTB/smoltalk2/xet-read-token/712df366ffbc959d9f4279bf2da579230b7ca5d8>; rel="xet-auth", <https://cas-server.xethub.hf.co/reconstruction/cf8a3a5665cf8b2ff667fb5236a1e5cb13c7582955f9533c88e1387997ef3af9>; rel="xet-reconstruction-info" < x-cache: Miss from cloudfront < via: 1.1 dd5af138aa8a11d8a70d5ef690ad1a2a.cloudfront.net (CloudFront) < x-amz-cf-pop: MSP50-P1 < x-amz-cf-id: 0qXw2sJGrWCLVt7c-Vtn09uE3nu6CrJw9RmAKvNr_flG75muclvlIg== < * Ignoring the response-body 100 1317 100 1317 0 0 9268 0 --:--:-- --:--:-- --:--:-- 9268 * Connection #0 to host huggingface.co left intact * Issue another request to this URL: 'https://cas-bridge.xethub.hf.co/xet-bridge-us/686fc33898943c873b45c9a0/cf8a3a5665cf8b2ff667fb5236a1e5cb13c7582955f9533c88e1387997ef3af9?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=cas%2F20250716%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20250716T145416Z&X-Amz-Expires=3600&X-Amz-Signature=21a15b50740d73fd8ce82d5105733ca067d2e612ada22570e09e93ebcc7f8842&X-Amz-SignedHeaders=host&X-Xet-Cas-Uid=public&response-content-disposition=inline%3B+filename*%3DUTF-8%27%270000.parquet%3B+filename%3D%220000.parquet%22%3B&x-id=GetObject&Expires=1752681256&Policy=eyJTdGF0ZW1lbnQiOlt7IkNvbmRpdGlvbiI6eyJEYXRlTGVzc1RoYW4iOnsiQVdTOkVwb2NoVGltZSI6MTc1MjY4MTI1Nn19LCJSZXNvdXJjZSI6Imh0dHBzOi8vY2FzLWJyaWRnZS54ZXRodWIuaGYuY28veGV0LWJyaWRnZS11cy82ODZmYzMzODk4OTQzYzg3M2I0NWM5YTAvY2Y4YTNhNTY2NWNmOGIyZmY2NjdmYjUyMzZhMWU1Y2IxM2M3NTgyOTU1Zjk1MzNjODhlMTM4Nzk5N2VmM2FmOSoifV19&Signature=Tl3xorJ-7yaWvG6Y1AhhRlV2Wko9QpoK1tdPOfNZaRbHo%7EdaAkJRJfcLAYD5YzozfHWBZMLlJsaMPJ1MAne21nr5%7E737sE6yLfBwHdP3ZFZhgrLsN%7EvkIWK2GYX543qTg-pVsf3it92w1oWyoyYNQ9srxLfEIuG2AKV2Nu3Ejl7S%7EaAq4Gv4jNemvRTLBFGgYPdUeuavudl4OD4RGkSGTnpzh-P-OBk5WvgpdZZnbb1cRAP73tFHsPDX4%7ETfQIor109G%7E0TB3Jq0wopO9WV0sMQyQs9peZc6bxONiTxb9aHM4yNvWNbVGtlPuC6YS4c9T1e9%7EehdgU4sDOI%7EhpaCvg__&Key-Pair-Id=K2L8F4GPSG1IFC' * Host cas-bridge.xethub.hf.co:443 was resolved. * IPv6: (none) * IPv4: 18.160.181.55, 18.160.181.54, 18.160.181.52, 18.160.181.88 * Trying 18.160.181.55:443... * Connected to cas-bridge.xethub.hf.co (18.160.181.55) port 443 * ALPN: curl offers h2,http/1.1 * (304) (OUT), TLS handshake, Client hello (1): } [328 bytes data] * (304) (IN), TLS handshake, Server hello (2): { [122 bytes data] * (304) (IN), TLS handshake, Unknown (8): { [19 bytes data] * (304) (IN), TLS handshake, Certificate (11): { [3818 bytes data] * (304) (IN), TLS handshake, CERT verify (15): { [264 bytes data] * (304) (IN), TLS handshake, Finished (20): { [36 bytes data] * (304) (OUT), TLS handshake, Finished (20): } [36 bytes data] * SSL connection using TLSv1.3 / AEAD-AES128-GCM-SHA256 / [blank] / UNDEF * ALPN: server accepted h2 * Server certificate: * subject: CN=cas-bridge.xethub.hf.co * start date: Jun 4 00:00:00 2025 GMT * expire date: Jul 3 23:59:59 2026 GMT * subjectAltName: host "cas-bridge.xethub.hf.co" matched cert's "cas-bridge.xethub.hf.co" * issuer: C=US; O=Amazon; CN=Amazon RSA 2048 M04 * SSL certificate verify ok. * using HTTP/2 * [HTTP/2] [1] OPENED stream for https://cas-bridge.xethub.hf.co/xet-bridge-us/686fc33898943c873b45c9a0/cf8a3a5665cf8b2ff667fb5236a1e5cb13c7582955f9533c88e1387997ef3af9?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=cas%2F20250716%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20250716T145416Z&X-Amz-Expires=3600&X-Amz-Signature=21a15b50740d73fd8ce82d5105733ca067d2e612ada22570e09e93ebcc7f8842&X-Amz-SignedHeaders=host&X-Xet-Cas-Uid=public&response-content-disposition=inline%3B+filename*%3DUTF-8%27%270000.parquet%3B+filename%3D%220000.parquet%22%3B&x-id=GetObject&Expires=1752681256&Policy=eyJTdGF0ZW1lbnQiOlt7IkNvbmRpdGlvbiI6eyJEYXRlTGVzc1RoYW4iOnsiQVdTOkVwb2NoVGltZSI6MTc1MjY4MTI1Nn19LCJSZXNvdXJjZSI6Imh0dHBzOi8vY2FzLWJyaWRnZS54ZXRodWIuaGYuY28veGV0LWJyaWRnZS11cy82ODZmYzMzODk4OTQzYzg3M2I0NWM5YTAvY2Y4YTNhNTY2NWNmOGIyZmY2NjdmYjUyMzZhMWU1Y2IxM2M3NTgyOTU1Zjk1MzNjODhlMTM4Nzk5N2VmM2FmOSoifV19&Signature=Tl3xorJ-7yaWvG6Y1AhhRlV2Wko9QpoK1tdPOfNZaRbHo%7EdaAkJRJfcLAYD5YzozfHWBZMLlJsaMPJ1MAne21nr5%7E737sE6yLfBwHdP3ZFZhgrLsN%7EvkIWK2GYX543qTg-pVsf3it92w1oWyoyYNQ9srxLfEIuG2AKV2Nu3Ejl7S%7EaAq4Gv4jNemvRTLBFGgYPdUeuavudl4OD4RGkSGTnpzh-P-OBk5WvgpdZZnbb1cRAP73tFHsPDX4%7ETfQIor109G%7E0TB3Jq0wopO9WV0sMQyQs9peZc6bxONiTxb9aHM4yNvWNbVGtlPuC6YS4c9T1e9%7EehdgU4sDOI%7EhpaCvg__&Key-Pair-Id=K2L8F4GPSG1IFC * [HTTP/2] [1] [:method: GET] * [HTTP/2] [1] [:scheme: https] * [HTTP/2] [1] [:authority: cas-bridge.xethub.hf.co] * [HTTP/2] [1] [:path: /xet-bridge-us/686fc33898943c873b45c9a0/cf8a3a5665cf8b2ff667fb5236a1e5cb13c7582955f9533c88e1387997ef3af9?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=cas%2F20250716%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20250716T145416Z&X-Amz-Expires=3600&X-Amz-Signature=21a15b50740d73fd8ce82d5105733ca067d2e612ada22570e09e93ebcc7f8842&X-Amz-SignedHeaders=host&X-Xet-Cas-Uid=public&response-content-disposition=inline%3B+filename*%3DUTF-8%27%270000.parquet%3B+filename%3D%220000.parquet%22%3B&x-id=GetObject&Expires=1752681256&Policy=eyJTdGF0ZW1lbnQiOlt7IkNvbmRpdGlvbiI6eyJEYXRlTGVzc1RoYW4iOnsiQVdTOkVwb2NoVGltZSI6MTc1MjY4MTI1Nn19LCJSZXNvdXJjZSI6Imh0dHBzOi8vY2FzLWJyaWRnZS54ZXRodWIuaGYuY28veGV0LWJyaWRnZS11cy82ODZmYzMzODk4OTQzYzg3M2I0NWM5YTAvY2Y4YTNhNTY2NWNmOGIyZmY2NjdmYjUyMzZhMWU1Y2IxM2M3NTgyOTU1Zjk1MzNjODhlMTM4Nzk5N2VmM2FmOSoifV19&Signature=Tl3xorJ-7yaWvG6Y1AhhRlV2Wko9QpoK1tdPOfNZaRbHo%7EdaAkJRJfcLAYD5YzozfHWBZMLlJsaMPJ1MAne21nr5%7E737sE6yLfBwHdP3ZFZhgrLsN%7EvkIWK2GYX543qTg-pVsf3it92w1oWyoyYNQ9srxLfEIuG2AKV2Nu3Ejl7S%7EaAq4Gv4jNemvRTLBFGgYPdUeuavudl4OD4RGkSGTnpzh-P-OBk5WvgpdZZnbb1cRAP73tFHsPDX4%7ETfQIor109G%7E0TB3Jq0wopO9WV0sMQyQs9peZc6bxONiTxb9aHM4yNvWNbVGtlPuC6YS4c9T1e9%7EehdgU4sDOI%7EhpaCvg__&Key-Pair-Id=K2L8F4GPSG1IFC] * [HTTP/2] [1] [user-agent: curl/8.7.1] * [HTTP/2] [1] [accept: */*] * [HTTP/2] [1] [range: bytes=217875070-218006142] > GET /xet-bridge-us/686fc33898943c873b45c9a0/cf8a3a5665cf8b2ff667fb5236a1e5cb13c7582955f9533c88e1387997ef3af9?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=cas%2F20250716%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20250716T145416Z&X-Amz-Expires=3600&X-Amz-Signature=21a15b50740d73fd8ce82d5105733ca067d2e612ada22570e09e93ebcc7f8842&X-Amz-SignedHeaders=host&X-Xet-Cas-Uid=public&response-content-disposition=inline%3B+filename*%3DUTF-8%27%270000.parquet%3B+filename%3D%220000.parquet%22%3B&x-id=GetObject&Expires=1752681256&Policy=eyJTdGF0ZW1lbnQiOlt7IkNvbmRpdGlvbiI6eyJEYXRlTGVzc1RoYW4iOnsiQVdTOkVwb2NoVGltZSI6MTc1MjY4MTI1Nn19LCJSZXNvdXJjZSI6Imh0dHBzOi8vY2FzLWJyaWRnZS54ZXRodWIuaGYuY28veGV0LWJyaWRnZS11cy82ODZmYzMzODk4OTQzYzg3M2I0NWM5YTAvY2Y4YTNhNTY2NWNmOGIyZmY2NjdmYjUyMzZhMWU1Y2IxM2M3NTgyOTU1Zjk1MzNjODhlMTM4Nzk5N2VmM2FmOSoifV19&Signature=Tl3xorJ-7yaWvG6Y1AhhRlV2Wko9QpoK1tdPOfNZaRbHo%7EdaAkJRJfcLAYD5YzozfHWBZMLlJsaMPJ1MAne21nr5%7E737sE6yLfBwHdP3ZFZhgrLsN%7EvkIWK2GYX543qTg-pVsf3it92w1oWyoyYNQ9srxLfEIuG2AKV2Nu3Ejl7S%7EaAq4Gv4jNemvRTLBFGgYPdUeuavudl4OD4RGkSGTnpzh-P-OBk5WvgpdZZnbb1cRAP73tFHsPDX4%7ETfQIor109G%7E0TB3Jq0wopO9WV0sMQyQs9peZc6bxONiTxb9aHM4yNvWNbVGtlPuC6YS4c9T1e9%7EehdgU4sDOI%7EhpaCvg__&Key-Pair-Id=K2L8F4GPSG1IFC HTTP/2 > Host: cas-bridge.xethub.hf.co > User-Agent: curl/8.7.1 > Accept: */* > Range: bytes=217875070-218006142 > * Request completely sent off < HTTP/2 206 < content-length: 131072 < date: Mon, 14 Jul 2025 08:40:28 GMT < x-request-id: 01K041FDPVA03RR2PRXDZSN30G < content-disposition: inline; filename*=UTF-8''0000.parquet; filename="0000.parquet"; < cache-control: public, max-age=31536000 < etag: "cf8a3a5665cf8b2ff667fb5236a1e5cb13c7582955f9533c88e1387997ef3af9" < access-control-allow-origin: * < access-control-allow-headers: Content-Range, Content-Type, Content-Disposition, ETag < access-control-expose-headers: Accept-Ranges, Content-Range, Content-Type, Content-Disposition, ETag, X-Cache < x-cache: Hit from cloudfront < via: 1.1 1c857e24a4dc84d2d9c78d5b3463bed6.cloudfront.net (CloudFront) < x-amz-cf-pop: MSP50-P2 < x-amz-cf-id: 3SxFmQa5wLeeXbNiwaAo0_RwoR_n7-SivjsLjDLG-Pwn5UhG2oiEQA== < age: 195496 < content-security-policy: default-src 'none'; sandbox < content-range: bytes 217875070-218006141/218006142 < { [8192 bytes data] 100 128k 100 128k 0 0 769k 0 --:--:-- --:--:-- --:--:-- 769k * Connection #1 to host cas-bridge.xethub.hf.co left intact </details> ### Expected behavior always get back a `206` ### Environment info n/a
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7685/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7685/timeline
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7682
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7682/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7682/comments
https://api.github.com/repos/huggingface/datasets/issues/7682/events
https://github.com/huggingface/datasets/issues/7682
3,229,687,253
I_kwDODunzps7AgR3V
7,682
Fail to cast Audio feature for numpy arrays in datasets 4.0.0
{ "avatar_url": "https://avatars.githubusercontent.com/u/163345686?v=4", "events_url": "https://api.github.com/users/luatil-cloud/events{/privacy}", "followers_url": "https://api.github.com/users/luatil-cloud/followers", "following_url": "https://api.github.com/users/luatil-cloud/following{/other_user}", "gists_url": "https://api.github.com/users/luatil-cloud/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/luatil-cloud", "id": 163345686, "login": "luatil-cloud", "node_id": "U_kgDOCbx1Fg", "organizations_url": "https://api.github.com/users/luatil-cloud/orgs", "received_events_url": "https://api.github.com/users/luatil-cloud/received_events", "repos_url": "https://api.github.com/users/luatil-cloud/repos", "site_admin": false, "starred_url": "https://api.github.com/users/luatil-cloud/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/luatil-cloud/subscriptions", "type": "User", "url": "https://api.github.com/users/luatil-cloud", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "thanks for reporting, I opened a PR and I'll make a patch release soon ", "> thanks for reporting, I opened a PR and I'll make a patch release soon\n\nThank you very much @lhoestq!" ]
2025-07-14T18:41:02Z
2025-07-15T12:10:39Z
2025-07-15T10:24:08Z
NONE
null
null
null
null
### Describe the bug Casting features with Audio for numpy arrays - done here with `ds.map(gen_sine, features=features)` fails in version 4.0.0 but not in version 3.6.0 ### Steps to reproduce the bug The following `uv script` should be able to reproduce the bug in version 4.0.0 and pass in version 3.6.0 on a macOS Sequoia 15.5 ```python # /// script # requires-python = ">=3.13" # dependencies = [ # "datasets[audio]==4.0.0", # "librosa>=0.11.0", # ] # /// # NAME # create_audio_dataset.py - create an audio dataset of sine waves # # SYNOPSIS # uv run create_audio_dataset.py # # DESCRIPTION # Create an audio dataset using the Hugging Face [datasets] library. # Illustrates how to create synthetic audio datasets using the [map] # datasets function. # # The strategy is to first create a dataset with the input to the # generation function, then execute the map function that generates # the result, and finally cast the final features. # # BUG # Casting features with Audio for numpy arrays - # done here with `ds.map(gen_sine, features=features)` fails # in version 4.0.0 but not in version 3.6.0 # # This happens both in cases where --extra audio is provided and where is not. # When audio is not provided i've installed the latest compatible version # of soundfile. # # The error when soundfile is installed but the audio --extra is not # indicates that the array values do not have the `.T` property, # whilst also indicating that the value is a list instead of a numpy array. # # Last lines of error report when for datasets + soundfile case # ... # # File "/Users/luasantilli/.cache/uv/archive-v0/tc_5IhQe7Zpw8ZXgQWpnl/lib/python3.13/site-packages/datasets/features/audio.py", line 239, in cast_storage # storage = pa.array([Audio().encode_example(x) if x is not None else None for x in storage.to_pylist()]) # ~~~~~~~~~~~~~~~~~~~~~~^^^ # File "/Users/luasantilli/.cache/uv/archive-v0/tc_5IhQe7Zpw8ZXgQWpnl/lib/python3.13/site-packages/datasets/features/audio.py", line 122, in encode_example # sf.write(buffer, value["array"].T, value["sampling_rate"], format="wav") # ^^^^^^^^^^^^^^^^ # AttributeError: 'list' object has no attribute 'T' # ... # # For the case of datasets[audio] without explicit adding soundfile I get an FFmpeg # error. # # Last lines of error report: # # ... # RuntimeError: Could not load libtorchcodec. Likely causes: # 1. FFmpeg is not properly installed in your environment. We support # versions 4, 5, 6 and 7. # 2. The PyTorch version (2.7.1) is not compatible with # this version of TorchCodec. Refer to the version compatibility # table: # https://github.com/pytorch/torchcodec?tab=readme-ov-file#installing-torchcodec. # 3. Another runtime dependency; see exceptions below. # The following exceptions were raised as we tried to load libtorchcodec: # # [start of libtorchcodec loading traceback] # FFmpeg version 7: dlopen(/Users/luasantilli/.cache/uv/archive-v0/RK3IAlGfiICwDkHm2guLC/lib/python3.13/site-packages/torchcodec/libtorchcodec_decoder7.dylib, 0x0006): Library not loaded: @rpath/libavutil.59.dylib # Referenced from: <6DB21246-F28A-31A6-910A-D8F3355D1064> /Users/luasantilli/.cache/uv/archive-v0/RK3IAlGfiICwDkHm2guLC/lib/python3.13/site-packages/torchcodec/libtorchcodec_decoder7.dylib # Reason: no LC_RPATH's found # FFmpeg version 6: dlopen(/Users/luasantilli/.cache/uv/archive-v0/RK3IAlGfiICwDkHm2guLC/lib/python3.13/site-packages/torchcodec/libtorchcodec_decoder6.dylib, 0x0006): Library not loaded: @rpath/libavutil.58.dylib # Referenced from: <BD3B44FC-E14B-3ABF-800F-BB54B6CCA3B1> /Users/luasantilli/.cache/uv/archive-v0/RK3IAlGfiICwDkHm2guLC/lib/python3.13/site-packages/torchcodec/libtorchcodec_decoder6.dylib # Reason: no LC_RPATH's found # FFmpeg version 5: dlopen(/Users/luasantilli/.cache/uv/archive-v0/RK3IAlGfiICwDkHm2guLC/lib/python3.13/site-packages/torchcodec/libtorchcodec_decoder5.dylib, 0x0006): Library not loaded: @rpath/libavutil.57.dylib # Referenced from: <F06EBF8A-238C-3A96-BFBB-B34E0BBDABF0> /Users/luasantilli/.cache/uv/archive-v0/RK3IAlGfiICwDkHm2guLC/lib/python3.13/site-packages/torchcodec/libtorchcodec_decoder5.dylib # Reason: no LC_RPATH's found # FFmpeg version 4: dlopen(/Users/luasantilli/.cache/uv/archive-v0/RK3IAlGfiICwDkHm2guLC/lib/python3.13/site-packages/torchcodec/libtorchcodec_decoder4.dylib, 0x0006): Library not loaded: @rpath/libavutil.56.dylib # Referenced from: <6E59F017-C703-3AF6-A271-6277DD5F8170> /Users/luasantilli/.cache/uv/archive-v0/RK3IAlGfiICwDkHm2guLC/lib/python3.13/site-packages/torchcodec/libtorchcodec_decoder4.dylib # Reason: no LC_RPATH's found # ... # # This is strange because the the same error does not happen when using version 3.6.0 with datasets[audio]. # # The same error appears in python3.12 ## Imports import numpy as np from datasets import Dataset, Features, Audio, Value ## Parameters NUM_WAVES = 128 SAMPLE_RATE = 16_000 DURATION = 1.0 ## Input dataset arguments freqs = np.linspace(100, 2000, NUM_WAVES).tolist() ds = Dataset.from_dict({"frequency": freqs}) ## Features for the final dataset features = Features( {"frequency": Value("float32"), "audio": Audio(sampling_rate=SAMPLE_RATE)} ) ## Generate audio sine waves and cast features def gen_sine(example): t = np.linspace(0, DURATION, int(SAMPLE_RATE * DURATION), endpoint=False) wav = np.sin(2 * np.pi * example["frequency"] * t) return { "frequency": example["frequency"], "audio": {"array": wav, "sampling_rate": SAMPLE_RATE}, } ds = ds.map(gen_sine, features=features) print(ds) print(ds.features) ``` ### Expected behavior I expect the result of version `4.0.0` to be the same of that in version `3.6.0`. Switching the value of the script above to `3.6.0` I get the following, expected, result: ``` $ uv run bug_report.py Map: 100%|███████████████████████████████████████████████████████| 128/128 [00:00<00:00, 204.58 examples/s] Dataset({ features: ['frequency', 'audio'], num_rows: 128 }) {'frequency': Value(dtype='float32', id=None), 'audio': Audio(sampling_rate=16000, mono=True, decode=True, id=None)} ``` ### Environment info - `datasets` version: 4.0.0 - Platform: macOS-15.5-arm64-arm-64bit-Mach-O - Python version: 3.13.1 - `huggingface_hub` version: 0.33.4 - PyArrow version: 20.0.0 - Pandas version: 2.3.1 - `fsspec` version: 2025.3.0
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 1, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/7682/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7682/timeline
null
completed
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7681
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7681/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7681/comments
https://api.github.com/repos/huggingface/datasets/issues/7681/events
https://github.com/huggingface/datasets/issues/7681
3,227,112,736
I_kwDODunzps7AWdUg
7,681
Probabilistic High Memory Usage and Freeze on Python 3.10
{ "avatar_url": "https://avatars.githubusercontent.com/u/82735346?v=4", "events_url": "https://api.github.com/users/ryan-minato/events{/privacy}", "followers_url": "https://api.github.com/users/ryan-minato/followers", "following_url": "https://api.github.com/users/ryan-minato/following{/other_user}", "gists_url": "https://api.github.com/users/ryan-minato/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/ryan-minato", "id": 82735346, "login": "ryan-minato", "node_id": "MDQ6VXNlcjgyNzM1MzQ2", "organizations_url": "https://api.github.com/users/ryan-minato/orgs", "received_events_url": "https://api.github.com/users/ryan-minato/received_events", "repos_url": "https://api.github.com/users/ryan-minato/repos", "site_admin": false, "starred_url": "https://api.github.com/users/ryan-minato/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/ryan-minato/subscriptions", "type": "User", "url": "https://api.github.com/users/ryan-minato", "user_view_type": "public" }
[]
open
false
null
[]
null
[]
2025-07-14T01:57:16Z
2025-07-14T01:57:16Z
null
NONE
null
null
null
null
### Describe the bug A probabilistic issue encountered when processing datasets containing PIL.Image columns using the huggingface/datasets library on Python 3.10. The process occasionally experiences a sudden and significant memory spike, reaching 100% utilization, leading to a complete freeze. During this freeze, the process becomes unresponsive, cannot be forcefully terminated, and does not throw any exceptions. I have attempted to mitigate this issue by setting `datasets.config.IN_MEMORY_MAX_SIZE`, but it had no effect. In fact, based on the document of `load_dataset`, I suspect that setting `IN_MEMORY_MAX_SIZE` might even have a counterproductive effect. This bug is not consistently reproducible, but its occurrence rate significantly decreases or disappears entirely when upgrading Python to version 3.11 or higher. Therefore, this issue also serves to share a potential solution for others who might encounter similar problems. ### Steps to reproduce the bug Due to the probabilistic nature of this bug, consistent reproduction cannot be guaranteed for every run. However, in my environment, processing large datasets like timm/imagenet-1k-wds(whether reading, casting, or mapping operations) almost certainly triggers the issue at some point. The probability of the issue occurring drastically increases when num_proc is set to a value greater than 1 during operations. When the issue occurs, my system logs repeatedly show the following warnings: ``` WARN: very high memory utilization: 57.74GiB / 57.74GiB (100 %) WARN: container is unhealthy: triggered memory limits (OOM) WARN: container is unhealthy: triggered memory limits (OOM) WARN: container is unhealthy: triggered memory limits (OOM) ``` ### Expected behavior The dataset should be read and processed normally without memory exhaustion or freezing. If an unrecoverable error occurs, an appropriate exception should be raised. I have found that upgrading Python to version 3.11 or above completely resolves this issue. On Python 3.11, when memory usage approaches 100%, it suddenly drops before slowly increasing again. I suspect this behavior is due to an expected memory management action, possibly involving writing to disk cache, which prevents the complete freeze observed in Python 3.10. ### Environment info - `datasets` version: 4.0.0 - Platform: Linux-5.15.0-71-generic-x86_64-with-glibc2.35 - Python version: 3.10.12 - `huggingface_hub` version: 0.33.4 - PyArrow version: 20.0.0 - Pandas version: 2.3.1 - `fsspec` version: 2025.3.0
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7681/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7681/timeline
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7680
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7680/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7680/comments
https://api.github.com/repos/huggingface/datasets/issues/7680/events
https://github.com/huggingface/datasets/issues/7680
3,224,824,151
I_kwDODunzps7ANulX
7,680
Question about iterable dataset and streaming
{ "avatar_url": "https://avatars.githubusercontent.com/u/73541181?v=4", "events_url": "https://api.github.com/users/Tavish9/events{/privacy}", "followers_url": "https://api.github.com/users/Tavish9/followers", "following_url": "https://api.github.com/users/Tavish9/following{/other_user}", "gists_url": "https://api.github.com/users/Tavish9/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/Tavish9", "id": 73541181, "login": "Tavish9", "node_id": "MDQ6VXNlcjczNTQxMTgx", "organizations_url": "https://api.github.com/users/Tavish9/orgs", "received_events_url": "https://api.github.com/users/Tavish9/received_events", "repos_url": "https://api.github.com/users/Tavish9/repos", "site_admin": false, "starred_url": "https://api.github.com/users/Tavish9/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Tavish9/subscriptions", "type": "User", "url": "https://api.github.com/users/Tavish9", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "> If we have already loaded the dataset, why doing to_iterable_dataset? Does it go through the dataset faster than map-style dataset?\n\nyes, it makes a faster DataLoader for example (otherwise DataLoader uses `__getitem__` which is slower than iterating)\n\n> load_dataset(streaming=True) is useful for huge dataset, but the speed is slow. How to make it comparable to to_iterable_dataset without loading the whole dataset into RAM?\n\nYou can aim for saturating your bandwidth using a DataLoader with num_workers and prefetch_factor. The maximum speed will be your internet bandwidth (unless your CPU is a bottlenbeck for CPU operations like image decoding).", "> > If we have already loaded the dataset, why doing to_iterable_dataset? Does it go through the dataset faster than map-style dataset?\n> \n> yes, it makes a faster DataLoader for example (otherwise DataLoader uses `__getitem__` which is slower than iterating)\n\nOkay, but `__getitem__` seems suitable for distributed settings. A distributed sampler would dispatch distinct indexes to each rank (rank0 got 0,1,2,3, rank1 got 4,5,6,7), however, if we make it `to_iterable_dataset`, then each rank needs to iterate all the samples, making it slower (i,e, rank1 got 0,1,2,3, rank2 got 0,1,2,3,(4,5,6,7))\n\nWhat's your opinion here?", "> however, if we make it to_iterable_dataset, then each rank needs to iterate all the samples, making it slower (i,e, rank1 got 0,1,2,3, rank2 got 0,1,2,3,(4,5,6,7))\n\nActually if you specify `to_iterable_dataset(num_shards=world_size)` (or a factor of world_size) and use a `torch.utils.data.DataLoader` then each rank will get a subset of the data thanks to the sharding. E.g. rank0 gets 0,1,2,3 and rank1 gets 4,5,6,7.\n\nThis is because `datasets.IterableDataset` subclasses `torch.utils.data.IterableDataset` and is aware of the current rank.", "Got it, very nice features `num_shards` 👍🏻 \n\nI would benchmark `to_iterable_dataset(num_shards=world_size)` against traditional map-style one in distributed settings in the near future.", "Hi @lhoestq , I run a test for the speed in single node. Things are not expected as you mentioned before.\n\n```python\nimport time\n\nimport datasets\nfrom torch.utils.data import DataLoader\n\n\ndef time_decorator(func):\n def wrapper(*args, **kwargs):\n start_time = time.time()\n result = func(*args, **kwargs)\n end_time = time.time()\n print(f\"Time taken: {end_time - start_time} seconds\")\n return result\n\n return wrapper\n\n\ndataset = datasets.load_dataset(\n \"parquet\", data_dir=\"my_dir\", split=\"train\"\n)\n\n\n@time_decorator\ndef load_dataset1():\n for _ in dataset:\n pass\n\n\n@time_decorator\ndef load_dataloader1():\n for _ in DataLoader(dataset, batch_size=100, num_workers=5):\n pass\n\n\n@time_decorator\ndef load_dataset2():\n for _ in dataset.to_iterable_dataset():\n pass\n\n\n@time_decorator\ndef load_dataloader2():\n for _ in DataLoader(dataset.to_iterable_dataset(num_shards=5), batch_size=100, num_workers=5):\n pass\n\n\nload_dataset1()\nload_dataloader1()\nload_dataset2()\nload_dataloader2()\n```\n```bash\nResolving data files: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 53192/53192 [00:00<00:00, 227103.16it/s]\nTime taken: 100.36162948608398 seconds\nTime taken: 70.09702134132385 seconds\nTime taken: 343.09229612350464 seconds\nTime taken: 132.8996012210846 seconds\n```\n\n1. Why `for _ in dataset.to_iterable_dataset()` is much slower than `for _ in dataset`\n2. The `70 < 132`, the dataloader is slower when `to_iterable_dataset`", "Loading in batches is faster than one example at a time. In your test the dataset is loaded in batches while the iterable_dataset is loaded one example at a time and the dataloader has a buffer to turn the examples to batches.\n\ncan you try this ?\n\n```\nbatched_dataset = dataset.batch(100, num_proc=5)\n\n@time_decorator\ndef load_dataloader3():\n for _ in DataLoader(batched_dataset.to_iterable_dataset(num_shards=5), batch_size=None, num_workers=5):\n pass\n```", "To be fair, I test the time including batching:\n```python\n@time_decorator\ndef load_dataloader3():\n for _ in DataLoader(dataset.batch(100, num_proc=5).to_iterable_dataset(num_shards=5), batch_size=None, num_workers=5):\n pass\n```\n\n```bash\nTime taken: 49.722447633743286 seconds\n```", "I run another test about shuffling.\n\n```python\n@time_decorator\ndef load_map_dataloader1():\n for _ in DataLoader(dataset, batch_size=100, num_workers=5, shuffle=True):\n pass\n\n@time_decorator\ndef load_map_dataloader2():\n for _ in DataLoader(dataset.batch(100, num_proc=5), batch_size=None, num_workers=5, shuffle=True):\n pass\n\n\n@time_decorator\ndef load_iter_dataloader1():\n for _ in DataLoader(dataset.batch(100, num_proc=5).to_iterable_dataset(num_shards=5).shuffle(buffer_size=1000), batch_size=None, num_workers=5):\n pass\n\nload_map_dataloader1()\nload_map_dataloader2()\nload_iter_dataloader1()\n```\n\n```bash\nTime taken: 43.8506863117218 seconds\nTime taken: 38.02591300010681 seconds\nTime taken: 53.38815689086914 seconds\n```\n\n\n- What if I have custom collate_fn when batching?\n\n- And if I want to shuffle the dataset, what's the correct order for `to_iterable_dataset(num_shards=x)`, `batch()` and `shuffle()`. Is `dataset.batch().to_iterable_dataset().shuffle()`? This is not faster than map-style dataset" ]
2025-07-12T04:48:30Z
2025-08-01T13:01:48Z
null
NONE
null
null
null
null
In the doc, I found the following example: https://github.com/huggingface/datasets/blob/611f5a592359ebac6f858f515c776aa7d99838b2/docs/source/stream.mdx?plain=1#L65-L78 I am confused, 1. If we have already loaded the dataset, why doing `to_iterable_dataset`? Does it go through the dataset faster than map-style dataset? 2. `load_dataset(streaming=True)` is useful for huge dataset, but the speed is slow. How to make it comparable to `to_iterable_dataset` without loading the whole dataset into RAM?
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7680/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7680/timeline
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7679
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7679/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7679/comments
https://api.github.com/repos/huggingface/datasets/issues/7679/events
https://github.com/huggingface/datasets/issues/7679
3,220,787,371
I_kwDODunzps6_-VCr
7,679
metric glue breaks with 4.0.0
{ "avatar_url": "https://avatars.githubusercontent.com/u/10676103?v=4", "events_url": "https://api.github.com/users/stas00/events{/privacy}", "followers_url": "https://api.github.com/users/stas00/followers", "following_url": "https://api.github.com/users/stas00/following{/other_user}", "gists_url": "https://api.github.com/users/stas00/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/stas00", "id": 10676103, "login": "stas00", "node_id": "MDQ6VXNlcjEwNjc2MTAz", "organizations_url": "https://api.github.com/users/stas00/orgs", "received_events_url": "https://api.github.com/users/stas00/received_events", "repos_url": "https://api.github.com/users/stas00/repos", "site_admin": false, "starred_url": "https://api.github.com/users/stas00/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/stas00/subscriptions", "type": "User", "url": "https://api.github.com/users/stas00", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "I released `evaluate` 0.4.5 yesterday to fix the issue - sorry for the inconvenience:\n\n```\npip install -U evaluate\n```", "Thanks so much, @lhoestq!" ]
2025-07-10T21:39:50Z
2025-07-11T17:42:01Z
2025-07-11T17:42:01Z
CONTRIBUTOR
null
null
null
null
### Describe the bug worked fine with 3.6.0, and with 4.0.0 `eval_metric = metric.compute()` in HF Accelerate breaks. The code that fails is: https://huggingface.co/spaces/evaluate-metric/glue/blob/v0.4.0/glue.py#L84 ``` def simple_accuracy(preds, labels): print(preds, labels) print(f"{preds==labels}") return float((preds == labels).mean()) ``` data: ``` Column([1, 0, 0, 1, 1]) Column([1, 0, 0, 1, 0]) False ``` ``` [rank0]: return float((preds == labels).mean()) [rank0]: ^^^^^^^^^^^^^^^^^^^^^^ [rank0]: AttributeError: 'bool' object has no attribute 'mean' ``` Some behavior has changed in this new major release of `datasets` and requires updating HF accelerate and perhaps the glue metric code, all belong to HF. ### Environment info datasets=4.0.0
{ "avatar_url": "https://avatars.githubusercontent.com/u/10676103?v=4", "events_url": "https://api.github.com/users/stas00/events{/privacy}", "followers_url": "https://api.github.com/users/stas00/followers", "following_url": "https://api.github.com/users/stas00/following{/other_user}", "gists_url": "https://api.github.com/users/stas00/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/stas00", "id": 10676103, "login": "stas00", "node_id": "MDQ6VXNlcjEwNjc2MTAz", "organizations_url": "https://api.github.com/users/stas00/orgs", "received_events_url": "https://api.github.com/users/stas00/received_events", "repos_url": "https://api.github.com/users/stas00/repos", "site_admin": false, "starred_url": "https://api.github.com/users/stas00/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/stas00/subscriptions", "type": "User", "url": "https://api.github.com/users/stas00", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7679/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7679/timeline
null
completed
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7678
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7678/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7678/comments
https://api.github.com/repos/huggingface/datasets/issues/7678/events
https://github.com/huggingface/datasets/issues/7678
3,218,625,544
I_kwDODunzps6_2FQI
7,678
To support decoding audio data, please install 'torchcodec'.
{ "avatar_url": "https://avatars.githubusercontent.com/u/48163702?v=4", "events_url": "https://api.github.com/users/alpcansoydas/events{/privacy}", "followers_url": "https://api.github.com/users/alpcansoydas/followers", "following_url": "https://api.github.com/users/alpcansoydas/following{/other_user}", "gists_url": "https://api.github.com/users/alpcansoydas/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/alpcansoydas", "id": 48163702, "login": "alpcansoydas", "node_id": "MDQ6VXNlcjQ4MTYzNzAy", "organizations_url": "https://api.github.com/users/alpcansoydas/orgs", "received_events_url": "https://api.github.com/users/alpcansoydas/received_events", "repos_url": "https://api.github.com/users/alpcansoydas/repos", "site_admin": false, "starred_url": "https://api.github.com/users/alpcansoydas/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/alpcansoydas/subscriptions", "type": "User", "url": "https://api.github.com/users/alpcansoydas", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "Hi ! yes you should `!pip install -U datasets[audio]` to have the required dependencies.\n\n`datasets` 4.0 now relies on `torchcodec` for audio decoding. The `torchcodec` AudioDecoder enables streaming from HF and also allows to decode ranges of audio", "Same issues on Colab.\n\n> !pip install -U datasets[audio] \n\nThis works for me. Thanks." ]
2025-07-10T09:43:13Z
2025-07-22T03:46:52Z
2025-07-11T05:05:42Z
NONE
null
null
null
null
In the latest version of datasets==4.0.0, i cannot print the audio data on the Colab notebook. But it works on the 3.6.0 version. !pip install -q -U datasets huggingface_hub fsspec from datasets import load_dataset downloaded_dataset = load_dataset("ymoslem/MediaSpeech", "tr", split="train") print(downloaded_dataset["audio"][0]) --------------------------------------------------------------------------- ImportError Traceback (most recent call last) [/tmp/ipython-input-4-90623240.py](https://localhost:8080/#) in <cell line: 0>() ----> 1 downloaded_dataset["audio"][0] 10 frames [/usr/local/lib/python3.11/dist-packages/datasets/features/audio.py](https://localhost:8080/#) in decode_example(self, value, token_per_repo_id) 170 from ._torchcodec import AudioDecoder 171 else: --> 172 raise ImportError("To support decoding audio data, please install 'torchcodec'.") 173 174 if not self.decode: ImportError: To support decoding audio data, please install 'torchcodec'. ### Environment info - `datasets` version: 4.0.0 - Platform: Linux-6.1.123+-x86_64-with-glibc2.35 - Python version: 3.11.13 - `huggingface_hub` version: 0.33.2 - PyArrow version: 18.1.0 - Pandas version: 2.2.2 - `fsspec` version: 2025.3.0
{ "avatar_url": "https://avatars.githubusercontent.com/u/48163702?v=4", "events_url": "https://api.github.com/users/alpcansoydas/events{/privacy}", "followers_url": "https://api.github.com/users/alpcansoydas/followers", "following_url": "https://api.github.com/users/alpcansoydas/following{/other_user}", "gists_url": "https://api.github.com/users/alpcansoydas/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/alpcansoydas", "id": 48163702, "login": "alpcansoydas", "node_id": "MDQ6VXNlcjQ4MTYzNzAy", "organizations_url": "https://api.github.com/users/alpcansoydas/orgs", "received_events_url": "https://api.github.com/users/alpcansoydas/received_events", "repos_url": "https://api.github.com/users/alpcansoydas/repos", "site_admin": false, "starred_url": "https://api.github.com/users/alpcansoydas/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/alpcansoydas/subscriptions", "type": "User", "url": "https://api.github.com/users/alpcansoydas", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7678/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7678/timeline
null
completed
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7677
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7677/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7677/comments
https://api.github.com/repos/huggingface/datasets/issues/7677/events
https://github.com/huggingface/datasets/issues/7677
3,218,044,656
I_kwDODunzps6_z3bw
7,677
Toxicity fails with datasets 4.0.0
{ "avatar_url": "https://avatars.githubusercontent.com/u/82044803?v=4", "events_url": "https://api.github.com/users/serena-ruan/events{/privacy}", "followers_url": "https://api.github.com/users/serena-ruan/followers", "following_url": "https://api.github.com/users/serena-ruan/following{/other_user}", "gists_url": "https://api.github.com/users/serena-ruan/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/serena-ruan", "id": 82044803, "login": "serena-ruan", "node_id": "MDQ6VXNlcjgyMDQ0ODAz", "organizations_url": "https://api.github.com/users/serena-ruan/orgs", "received_events_url": "https://api.github.com/users/serena-ruan/received_events", "repos_url": "https://api.github.com/users/serena-ruan/repos", "site_admin": false, "starred_url": "https://api.github.com/users/serena-ruan/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/serena-ruan/subscriptions", "type": "User", "url": "https://api.github.com/users/serena-ruan", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "Hi ! You can fix this by upgrading `evaluate`:\n\n```\npip install -U evaluate\n```", "Thanks, verified evaluate 0.4.5 works!" ]
2025-07-10T06:15:22Z
2025-07-11T04:40:59Z
2025-07-11T04:40:59Z
NONE
null
null
null
null
### Describe the bug With the latest 4.0.0 release, huggingface toxicity evaluation module fails with error: `ValueError: text input must be of type `str` (single example), `List[str]` (batch or single pretokenized example) or `List[List[str]]` (batch of pretokenized examples).` ### Steps to reproduce the bug Repro: ``` >>> toxicity.compute(predictions=["This is a response"]) Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/Users/serena.ruan/miniconda3/envs/mlflow-310/lib/python3.10/site-packages/evaluate/module.py", line 467, in compute output = self._compute(**inputs, **compute_kwargs) File "/Users/serena.ruan/.cache/huggingface/modules/evaluate_modules/metrics/evaluate-measurement--toxicity/2390290fa0bf6d78480143547c6b08f3d4f8805b249df8c7a8e80d0ce8e3778b/toxicity.py", line 135, in _compute scores = toxicity(predictions, self.toxic_classifier, toxic_label) File "/Users/serena.ruan/.cache/huggingface/modules/evaluate_modules/metrics/evaluate-measurement--toxicity/2390290fa0bf6d78480143547c6b08f3d4f8805b249df8c7a8e80d0ce8e3778b/toxicity.py", line 103, in toxicity for pred_toxic in toxic_classifier(preds): File "/Users/serena.ruan/miniconda3/envs/mlflow-310/lib/python3.10/site-packages/transformers/pipelines/text_classification.py", line 159, in __call__ result = super().__call__(*inputs, **kwargs) File "/Users/serena.ruan/miniconda3/envs/mlflow-310/lib/python3.10/site-packages/transformers/pipelines/base.py", line 1431, in __call__ return self.run_single(inputs, preprocess_params, forward_params, postprocess_params) File "/Users/serena.ruan/miniconda3/envs/mlflow-310/lib/python3.10/site-packages/transformers/pipelines/base.py", line 1437, in run_single model_inputs = self.preprocess(inputs, **preprocess_params) File "/Users/serena.ruan/miniconda3/envs/mlflow-310/lib/python3.10/site-packages/transformers/pipelines/text_classification.py", line 183, in preprocess return self.tokenizer(inputs, return_tensors=return_tensors, **tokenizer_kwargs) File "/Users/serena.ruan/miniconda3/envs/mlflow-310/lib/python3.10/site-packages/transformers/tokenization_utils_base.py", line 2867, in __call__ encodings = self._call_one(text=text, text_pair=text_pair, **all_kwargs) File "/Users/serena.ruan/miniconda3/envs/mlflow-310/lib/python3.10/site-packages/transformers/tokenization_utils_base.py", line 2927, in _call_one raise ValueError( ValueError: text input must be of type `str` (single example), `List[str]` (batch or single pretokenized example) or `List[List[str]]` (batch of pretokenized examples). ``` ### Expected behavior This works before 4.0.0 release ### Environment info - `datasets` version: 4.0.0 - Platform: macOS-15.5-arm64-arm-64bit - Python version: 3.10.16 - `huggingface_hub` version: 0.33.0 - PyArrow version: 19.0.1 - Pandas version: 2.2.3 - `fsspec` version: 2024.12.0
{ "avatar_url": "https://avatars.githubusercontent.com/u/82044803?v=4", "events_url": "https://api.github.com/users/serena-ruan/events{/privacy}", "followers_url": "https://api.github.com/users/serena-ruan/followers", "following_url": "https://api.github.com/users/serena-ruan/following{/other_user}", "gists_url": "https://api.github.com/users/serena-ruan/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/serena-ruan", "id": 82044803, "login": "serena-ruan", "node_id": "MDQ6VXNlcjgyMDQ0ODAz", "organizations_url": "https://api.github.com/users/serena-ruan/orgs", "received_events_url": "https://api.github.com/users/serena-ruan/received_events", "repos_url": "https://api.github.com/users/serena-ruan/repos", "site_admin": false, "starred_url": "https://api.github.com/users/serena-ruan/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/serena-ruan/subscriptions", "type": "User", "url": "https://api.github.com/users/serena-ruan", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7677/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7677/timeline
null
completed
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7676
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7676/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7676/comments
https://api.github.com/repos/huggingface/datasets/issues/7676/events
https://github.com/huggingface/datasets/issues/7676
3,216,857,559
I_kwDODunzps6_vVnX
7,676
Many things broken since the new 4.0.0 release
{ "avatar_url": "https://avatars.githubusercontent.com/u/37179323?v=4", "events_url": "https://api.github.com/users/mobicham/events{/privacy}", "followers_url": "https://api.github.com/users/mobicham/followers", "following_url": "https://api.github.com/users/mobicham/following{/other_user}", "gists_url": "https://api.github.com/users/mobicham/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mobicham", "id": 37179323, "login": "mobicham", "node_id": "MDQ6VXNlcjM3MTc5MzIz", "organizations_url": "https://api.github.com/users/mobicham/orgs", "received_events_url": "https://api.github.com/users/mobicham/received_events", "repos_url": "https://api.github.com/users/mobicham/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mobicham/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mobicham/subscriptions", "type": "User", "url": "https://api.github.com/users/mobicham", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "Happy to take a look, do you have a list of impacted datasets ?", "Thanks @lhoestq , related to lm-eval, at least `winogrande`, `mmlu` and `hellaswag`, based on my tests yesterday. But many others like <a href=\"https://huggingface.co/datasets/lukaemon/bbh\">bbh</a>, most probably others too. ", "Hi @mobicham ,\n\nI was having the same issue `ValueError: Feature type 'List' not found` yesterday, when I tried to load my dataset using the `load_dataset()` function.\nBy updating to `4.0.0`, I don't see this error anymore.\n\np.s. I used `Sequence` in replace of list when building my dataset (see below)\n```\nfeatures = Features({\n ...\n \"objects\": Sequence({\n \"id\": Value(\"int64\"),\n \"bbox\": Sequence(Value(\"float32\"), length=4),\n \"category\": Value(\"string\")\n }),\n ...\n})\ndataset = Dataset.from_dict(data_dict)\ndataset = dataset.cast(features)\n\n``` \n", "The issue comes from [hails/mmlu_no_train](https://huggingface.co/datasets/hails/mmlu_no_train), [allenai/winogrande](https://huggingface.co/datasets/allenai/winogrande), [lukaemon/bbh](https://huggingface.co/datasets/lukaemon/bbh) and [Rowan/hellaswag](https://huggingface.co/datasets/Rowan/hellaswag) which are all unsupported in `datasets` 4.0 since they are based on python scripts. Fortunately there are PRs to fix those datasets (I did some of them a year ago but dataset authors haven't merged yet... will have to ping people again about it and update here):\n\n- https://huggingface.co/datasets/hails/mmlu_no_train/discussions/2 merged ! ✅ \n- https://huggingface.co/datasets/allenai/winogrande/discussions/6 merged ! ✅ \n- https://huggingface.co/datasets/Rowan/hellaswag/discussions/7 merged ! ✅ \n- https://huggingface.co/datasets/lukaemon/bbh/discussions/2 merged ! ✅ ", "Thank you very much @lhoestq , I will try next week 👍 ", "I get this error when using datasets 3.5.1 to load a dataset saved with datasets 4.0.0. If you are hitting this issue, make sure that both dataset saving code and the loading code are <4.0.0 or >=4.0.0.", "This broke several lm-eval-harness workflows for me and reverting to older versions of datasets is not fixing the issue, does anyone have a workaround?", "> I get this error when using datasets 3.5.1 to load a dataset saved with datasets 4.0.0. If you are hitting this issue, make sure that both dataset saving code and the loading code are <4.0.0 or >=4.0.0.\n\n`datasets` 4.0 can load datasets saved using any older version. But the other way around is not always true: if you save a dataset with `datasets` 4.0 it may use the new `List` type that requires 4.0 and raise `ValueError: Feature type 'List' not found.`\n\nHowever issues with lm eval harness seem to come from another issue: unsupported dataset scripts (see https://github.com/huggingface/datasets/issues/7676#issuecomment-3057550659)\n\n> This broke several lm-eval-harness workflows for me and reverting to older versions of datasets is not fixing the issue, does anyone have a workaround?\n\nwhen reverting to an old `datasets` version I'd encourage you to clear your cache (by default it is located at `~/.cache/huggingface/datasets`) otherwise it might try to load a `List` type that didn't exist in old versions", "All the impacted datasets in lm eval harness have been fixed thanks to the reactivity of dataset authors ! let me know if you encounter issues with other datasets :)", "Hello folks, I have found `patrickvonplaten/librispeech_asr_dummy` to be another dataset that is currently broken since the 4.0.0 release. Is there a PR on this as well?", "https://huggingface.co/datasets/microsoft/prototypical-hai-collaborations seems to be impacted as well.\n\n```\n_temp = load_dataset(\"microsoft/prototypical-hai-collaborations\", \"wildchat1m_en3u-task_anns\")\n``` \nleads to \n`ValueError: Feature type 'List' not found. Available feature types: ['Value', 'ClassLabel', 'Translation', 'TranslationVariableLanguages', 'LargeList', 'Sequence', 'Array2D', 'Array3D', 'Array4D', 'Array5D', 'Audio', 'Image', 'Video', 'Pdf']`", "`microsoft/prototypical-hai-collaborations` is not impacted, you can load it using both `datasets` 3.6 and 4.0. I also tried on colab to confirm.\n\nOne thing that could explain `ValueError: Feature type 'List' not found.` is maybe if you have loaded and cached this dataset with `datasets` 4.0 and then tried to reload it from cache using 3.6.0.\n\nEDIT: actually I tried and 3.6 can reload datasets cached with 4.0 so I'm not sure why you have this error. Which version of `datasets` are you using ?", "> Hello folks, I have found patrickvonplaten/librispeech_asr_dummy to be another dataset that is currently broken since the 4.0.0 release. Is there a PR on this as well?\n\nI guess you can use [hf-internal-testing/librispeech_asr_dummy](https://huggingface.co/datasets/hf-internal-testing/librispeech_asr_dummy) instead of `patrickvonplaten/librispeech_asr_dummy`, or ask the dataset author to convert their dataset to Parquet", "i am having a similar issue with these evals under leaderboard: https://github.com/EleutherAI/lm-evaluation-harness/tree/main/lm_eval/tasks/leaderboard\n\nsome datasets look pretty old (2years), not sure if the author would fix it", "For datasets based on scripts, I shared a command here to update them: https://github.com/huggingface/datasets/issues/7693#issuecomment-3253005348\n\nOtherwise if you are getting `ValueError: Feature type 'List' not found.` as in the original post, make sure you use `datasets` v4 to reload datasets that were loaded with v4." ]
2025-07-09T18:59:50Z
2025-09-18T16:33:34Z
null
NONE
null
null
null
null
### Describe the bug The new changes in 4.0.0 are breaking many datasets, including those from lm-evaluation-harness. I am trying to revert back to older versions, like 3.6.0 to make the eval work but I keep getting: ``` Python File /venv/main/lib/python3.12/site-packages/datasets/features/features.py:1474, in generate_from_dict(obj) 1471 class_type = _FEATURE_TYPES.get(_type, None) or globals().get(_type, None) 1473 if class_type is None: -> 1474 raise ValueError(f"Feature type '{_type}' not found. Available feature types: {list(_FEATURE_TYPES.keys())}") 1476 if class_type == LargeList: 1477 feature = obj.pop("feature") ValueError: Feature type 'List' not found. Available feature types: ['Value', 'ClassLabel', 'Translation', 'TranslationVariableLanguages', 'LargeList', 'Sequence', 'Array2D', 'Array3D', 'Array4D', 'Array5D', 'Audio', 'Image', 'Video', 'Pdf'] ``` ### Steps to reproduce the bug ``` Python import lm_eval model_eval = lm_eval.models.huggingface.HFLM(pretrained=model, tokenizer=tokenizer) lm_eval.evaluator.simple_evaluate(model_eval, tasks=["winogrande"], num_fewshot=5, batch_size=1) ``` ### Expected behavior Older `datasets` versions should work just fine as before ### Environment info - `datasets` version: 3.6.0 - Platform: Linux-6.8.0-60-generic-x86_64-with-glibc2.39 - Python version: 3.12.11 - `huggingface_hub` version: 0.33.1 - PyArrow version: 20.0.0 - Pandas version: 2.3.1 - `fsspec` version: 2025.3.0
null
{ "+1": 19, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 19, "url": "https://api.github.com/repos/huggingface/datasets/issues/7676/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7676/timeline
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7675
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7675/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7675/comments
https://api.github.com/repos/huggingface/datasets/issues/7675/events
https://github.com/huggingface/datasets/issues/7675
3,216,699,094
I_kwDODunzps6_uu7W
7,675
common_voice_11_0.py failure in dataset library
{ "avatar_url": "https://avatars.githubusercontent.com/u/98793855?v=4", "events_url": "https://api.github.com/users/egegurel/events{/privacy}", "followers_url": "https://api.github.com/users/egegurel/followers", "following_url": "https://api.github.com/users/egegurel/following{/other_user}", "gists_url": "https://api.github.com/users/egegurel/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/egegurel", "id": 98793855, "login": "egegurel", "node_id": "U_kgDOBeN5fw", "organizations_url": "https://api.github.com/users/egegurel/orgs", "received_events_url": "https://api.github.com/users/egegurel/received_events", "repos_url": "https://api.github.com/users/egegurel/repos", "site_admin": false, "starred_url": "https://api.github.com/users/egegurel/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/egegurel/subscriptions", "type": "User", "url": "https://api.github.com/users/egegurel", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "Hi ! This dataset is not in a supported format and `datasets` 4 doesn't support datasets that based on python scripts which are often source of errors. Feel free to ask the dataset authors to convert the dataset to a supported format at https://huggingface.co/datasets/mozilla-foundation/common_voice_11_0/discussions, e.g. parquet.\n\nIn the meantime you can pin old versions of `datasets` like `datasets==3.6.0`", "Thanks @lhoestq! I encountered the same issue and switching to an older version of `datasets` worked.", ">which version of datasets worked for you, I tried switching to 4.6.0 and also moved back for fsspec, but still facing issues for this.\n\n", "Try datasets<=3.6.0", "same issue " ]
2025-07-09T17:47:59Z
2025-07-22T09:35:42Z
null
NONE
null
null
null
null
### Describe the bug I tried to download dataset but have got this error: from datasets import load_dataset load_dataset("mozilla-foundation/common_voice_11_0", "en", split="test", streaming=True) --------------------------------------------------------------------------- RuntimeError Traceback (most recent call last) Cell In[8], line 4 1 from datasets import load_dataset ----> 4 load_dataset("mozilla-foundation/common_voice_11_0", "en", split="test", streaming=True) File c:\Users\ege_g\AppData\Local\Programs\Python\Python312\Lib\site-packages\datasets\load.py:1392, in load_dataset(path, name, data_dir, data_files, split, cache_dir, features, download_config, download_mode, verification_mode, keep_in_memory, save_infos, revision, token, streaming, num_proc, storage_options, **config_kwargs) 1387 verification_mode = VerificationMode( 1388 (verification_mode or VerificationMode.BASIC_CHECKS) if not save_infos else VerificationMode.ALL_CHECKS 1389 ) 1391 # Create a dataset builder -> 1392 builder_instance = load_dataset_builder( 1393 path=path, 1394 name=name, 1395 data_dir=data_dir, 1396 data_files=data_files, 1397 cache_dir=cache_dir, 1398 features=features, 1399 download_config=download_config, 1400 download_mode=download_mode, 1401 revision=revision, 1402 token=token, 1403 storage_options=storage_options, 1404 **config_kwargs, 1405 ) 1407 # Return iterable dataset in case of streaming 1408 if streaming: File c:\Users\ege_g\AppData\Local\Programs\Python\Python312\Lib\site-packages\datasets\load.py:1132, in load_dataset_builder(path, name, data_dir, data_files, cache_dir, features, download_config, download_mode, revision, token, storage_options, **config_kwargs) 1130 if features is not None: 1131 features = _fix_for_backward_compatible_features(features) -> 1132 dataset_module = dataset_module_factory( 1133 path, 1134 revision=revision, 1135 download_config=download_config, 1136 download_mode=download_mode, 1137 data_dir=data_dir, 1138 data_files=data_files, 1139 cache_dir=cache_dir, 1140 ) 1141 # Get dataset builder class 1142 builder_kwargs = dataset_module.builder_kwargs File c:\Users\ege_g\AppData\Local\Programs\Python\Python312\Lib\site-packages\datasets\load.py:1031, in dataset_module_factory(path, revision, download_config, download_mode, data_dir, data_files, cache_dir, **download_kwargs) 1026 if isinstance(e1, FileNotFoundError): 1027 raise FileNotFoundError( 1028 f"Couldn't find any data file at {relative_to_absolute_path(path)}. " 1029 f"Couldn't find '{path}' on the Hugging Face Hub either: {type(e1).__name__}: {e1}" 1030 ) from None -> 1031 raise e1 from None 1032 else: 1033 raise FileNotFoundError(f"Couldn't find any data file at {relative_to_absolute_path(path)}.") File c:\Users\ege_g\AppData\Local\Programs\Python\Python312\Lib\site-packages\datasets\load.py:989, in dataset_module_factory(path, revision, download_config, download_mode, data_dir, data_files, cache_dir, **download_kwargs) 981 try: 982 api.hf_hub_download( 983 repo_id=path, 984 filename=filename, (...) 987 proxies=download_config.proxies, 988 ) --> 989 raise RuntimeError(f"Dataset scripts are no longer supported, but found {filename}") 990 except EntryNotFoundError: 991 # Use the infos from the parquet export except in some cases: 992 if data_dir or data_files or (revision and revision != "main"): RuntimeError: Dataset scripts are no longer supported, but found common_voice_11_0.py ### Steps to reproduce the bug from datasets import load_dataset load_dataset("mozilla-foundation/common_voice_11_0", "en", split="test", streaming=True) ### Expected behavior its supposed to download this dataset. ### Environment info Python 3.12 , Windows 11
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7675/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7675/timeline
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7671
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7671/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7671/comments
https://api.github.com/repos/huggingface/datasets/issues/7671/events
https://github.com/huggingface/datasets/issues/7671
3,213,223,886
I_kwDODunzps6_hefO
7,671
Mapping function not working if the first example is returned as None
{ "avatar_url": "https://avatars.githubusercontent.com/u/46325823?v=4", "events_url": "https://api.github.com/users/dnaihao/events{/privacy}", "followers_url": "https://api.github.com/users/dnaihao/followers", "following_url": "https://api.github.com/users/dnaihao/following{/other_user}", "gists_url": "https://api.github.com/users/dnaihao/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/dnaihao", "id": 46325823, "login": "dnaihao", "node_id": "MDQ6VXNlcjQ2MzI1ODIz", "organizations_url": "https://api.github.com/users/dnaihao/orgs", "received_events_url": "https://api.github.com/users/dnaihao/received_events", "repos_url": "https://api.github.com/users/dnaihao/repos", "site_admin": false, "starred_url": "https://api.github.com/users/dnaihao/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/dnaihao/subscriptions", "type": "User", "url": "https://api.github.com/users/dnaihao", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "Hi, map() always expect an output.\n\nIf you wish to filter examples, you should use filter(), in your case it could be something like this:\n\n```python\nds = ds.map(my_processing_function).filter(ignore_long_prompts)\n```", "Realized this! Thanks a lot, I will close this issue then." ]
2025-07-08T17:07:47Z
2025-07-09T12:30:32Z
2025-07-09T12:30:32Z
NONE
null
null
null
null
### Describe the bug https://github.com/huggingface/datasets/blob/8a19de052e3d79f79cea26821454bbcf0e9dcd68/src/datasets/arrow_dataset.py#L3652C29-L3652C37 Here we can see the writer is initialized on `i==0`. However, there can be cases where in the user mapping function, the first example is filtered out (length constraints, etc). In this case, the writer would be a `None` type and the code will report `NoneType has no write function`. A simple fix is available, simply change line 3652 from `if i == 0:` to `if writer is None:` ### Steps to reproduce the bug Prepare a dataset have this function ``` import datasets def make_map_fn(split, max_prompt_tokens=3): def process_fn(example, idx): question = example['question'] reasoning_steps = example['reasoning_steps'] label = example['label'] answer_format = "" for i in range(len(reasoning_steps)): system_message = "Dummy" all_steps_formatted = [] content = f"""Dummy""" prompt = [ {"role": "system", "content": system_message}, {"role": "user", "content": content}, ] tokenized = tokenizer.apply_chat_template(prompt, return_tensors="pt", truncation=False) if tokenized.shape[1] > max_prompt_tokens: return None # skip overly long examples data = { "dummy": "dummy" } return data return process_fn ... # load your dataset ... train = train.map(function=make_map_fn('train'), with_indices=True) ``` ### Expected behavior The dataset mapping shall behave even when the first example is filtered out. ### Environment info I am using `datasets==3.6.0` but I have observed this issue in the github repo too: https://github.com/huggingface/datasets/blob/8a19de052e3d79f79cea26821454bbcf0e9dcd68/src/datasets/arrow_dataset.py#L3652C29-L3652C37
{ "avatar_url": "https://avatars.githubusercontent.com/u/46325823?v=4", "events_url": "https://api.github.com/users/dnaihao/events{/privacy}", "followers_url": "https://api.github.com/users/dnaihao/followers", "following_url": "https://api.github.com/users/dnaihao/following{/other_user}", "gists_url": "https://api.github.com/users/dnaihao/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/dnaihao", "id": 46325823, "login": "dnaihao", "node_id": "MDQ6VXNlcjQ2MzI1ODIz", "organizations_url": "https://api.github.com/users/dnaihao/orgs", "received_events_url": "https://api.github.com/users/dnaihao/received_events", "repos_url": "https://api.github.com/users/dnaihao/repos", "site_admin": false, "starred_url": "https://api.github.com/users/dnaihao/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/dnaihao/subscriptions", "type": "User", "url": "https://api.github.com/users/dnaihao", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7671/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7671/timeline
null
completed
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7669
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7669/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7669/comments
https://api.github.com/repos/huggingface/datasets/issues/7669/events
https://github.com/huggingface/datasets/issues/7669
3,203,541,091
I_kwDODunzps6-8ihj
7,669
How can I add my custom data to huggingface datasets
{ "avatar_url": "https://avatars.githubusercontent.com/u/219205504?v=4", "events_url": "https://api.github.com/users/xiagod/events{/privacy}", "followers_url": "https://api.github.com/users/xiagod/followers", "following_url": "https://api.github.com/users/xiagod/following{/other_user}", "gists_url": "https://api.github.com/users/xiagod/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/xiagod", "id": 219205504, "login": "xiagod", "node_id": "U_kgDODRDPgA", "organizations_url": "https://api.github.com/users/xiagod/orgs", "received_events_url": "https://api.github.com/users/xiagod/received_events", "repos_url": "https://api.github.com/users/xiagod/repos", "site_admin": false, "starred_url": "https://api.github.com/users/xiagod/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/xiagod/subscriptions", "type": "User", "url": "https://api.github.com/users/xiagod", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "Hey @xiagod \n\nThe easiest way to add your custom data to Hugging Face Datasets is to use the built-in load_dataset function with your local files. Some examples include:\n\nCSV files:\nfrom datasets import load_dataset\ndataset = load_dataset(\"csv\", data_files=\"my_file.csv\")\n\nJSON or JSONL files:\nfrom datasets import load_dataset\ndataset = load_dataset(\"json\", data_files=\"my_file.json\")\n\n\nImages stored in folders (e.g. data/train/cat/, data/train/dog/):\nfrom datasets import load_dataset\ndataset = load_dataset(\"imagefolder\", data_dir=\"/path/to/pokemon\")\n\n\nThese methods let you quickly create a custom dataset without needing to write a full script.\n\nMore information can be found in Hugging Face's tutorial \"Create a dataset\" or \"Load\" documentation here: \n\nhttps://huggingface.co/docs/datasets/create_dataset \n\nhttps://huggingface.co/docs/datasets/loading#local-and-remote-files\n\n\n\nIf you want to submit your dataset to the Hugging Face Datasets GitHub repo so others can load it follow this guide: \n\nhttps://huggingface.co/docs/datasets/upload_dataset \n\n\n" ]
2025-07-04T19:19:54Z
2025-07-05T18:19:37Z
null
NONE
null
null
null
null
I want to add my custom dataset in huggingface dataset. Please guide me how to achieve that.
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7669/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7669/timeline
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7668
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7668/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7668/comments
https://api.github.com/repos/huggingface/datasets/issues/7668/events
https://github.com/huggingface/datasets/issues/7668
3,199,039,322
I_kwDODunzps6-rXda
7,668
Broken EXIF crash the whole program
{ "avatar_url": "https://avatars.githubusercontent.com/u/30485844?v=4", "events_url": "https://api.github.com/users/Seas0/events{/privacy}", "followers_url": "https://api.github.com/users/Seas0/followers", "following_url": "https://api.github.com/users/Seas0/following{/other_user}", "gists_url": "https://api.github.com/users/Seas0/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/Seas0", "id": 30485844, "login": "Seas0", "node_id": "MDQ6VXNlcjMwNDg1ODQ0", "organizations_url": "https://api.github.com/users/Seas0/orgs", "received_events_url": "https://api.github.com/users/Seas0/received_events", "repos_url": "https://api.github.com/users/Seas0/repos", "site_admin": false, "starred_url": "https://api.github.com/users/Seas0/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Seas0/subscriptions", "type": "User", "url": "https://api.github.com/users/Seas0", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "There are other discussions about error handling for images decoding here : https://github.com/huggingface/datasets/issues/7632 https://github.com/huggingface/datasets/issues/7612\n\nand a PR here: https://github.com/huggingface/datasets/pull/7638 (would love your input on the proposed solution !)" ]
2025-07-03T11:24:15Z
2025-07-03T12:27:16Z
null
NONE
null
null
null
null
### Describe the bug When parsing this image in the ImageNet1K dataset, the `datasets` crashs whole training process just because unable to parse an invalid EXIF tag. ![Image](https://github.com/user-attachments/assets/3c840203-ac8c-41a0-9cf7-45f64488037d) ### Steps to reproduce the bug Use the `datasets.Image.decode_example` method to decode the aforementioned image could reproduce the bug. The decoding function will throw an unhandled exception at the `image.getexif()` method call due to invalid utf-8 stream in EXIF tags. ``` File lib/python3.12/site-packages/datasets/features/image.py:188, in Image.decode_example(self, value, token_per_repo_id) 186 image = PIL.Image.open(BytesIO(bytes_)) 187 image.load() # to avoid "Too many open files" errors --> 188 if image.getexif().get(PIL.Image.ExifTags.Base.Orientation) is not None: 189 image = PIL.ImageOps.exif_transpose(image) 190 if self.mode and self.mode != image.mode: File lib/python3.12/site-packages/PIL/Image.py:1542, in Image.getexif(self) 1540 xmp_tags = self.info.get("XML:com.adobe.xmp") 1541 if not xmp_tags and (xmp_tags := self.info.get("xmp")): -> 1542 xmp_tags = xmp_tags.decode("utf-8") 1543 if xmp_tags: 1544 match = re.search(r'tiff:Orientation(="|>)([0-9])', xmp_tags) UnicodeDecodeError: 'utf-8' codec can't decode byte 0xa8 in position 4312: invalid start byte ``` ### Expected behavior The invalid EXIF tag should simply be ignored or issue a warning message, instead of crash the whole program at once. ### Environment info - `datasets` version: 3.6.0 - Platform: Linux-6.5.0-18-generic-x86_64-with-glibc2.35 - Python version: 3.12.11 - `huggingface_hub` version: 0.33.0 - PyArrow version: 20.0.0 - Pandas version: 2.3.0 - `fsspec` version: 2025.3.0
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7668/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7668/timeline
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7665
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7665/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7665/comments
https://api.github.com/repos/huggingface/datasets/issues/7665/events
https://github.com/huggingface/datasets/issues/7665
3,193,239,955
I_kwDODunzps6-VPmT
7,665
Function load_dataset() misinterprets string field content as part of dataset schema when dealing with `.jsonl` files
{ "avatar_url": "https://avatars.githubusercontent.com/u/1151198?v=4", "events_url": "https://api.github.com/users/zdzichukowalski/events{/privacy}", "followers_url": "https://api.github.com/users/zdzichukowalski/followers", "following_url": "https://api.github.com/users/zdzichukowalski/following{/other_user}", "gists_url": "https://api.github.com/users/zdzichukowalski/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/zdzichukowalski", "id": 1151198, "login": "zdzichukowalski", "node_id": "MDQ6VXNlcjExNTExOTg=", "organizations_url": "https://api.github.com/users/zdzichukowalski/orgs", "received_events_url": "https://api.github.com/users/zdzichukowalski/received_events", "repos_url": "https://api.github.com/users/zdzichukowalski/repos", "site_admin": false, "starred_url": "https://api.github.com/users/zdzichukowalski/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/zdzichukowalski/subscriptions", "type": "User", "url": "https://api.github.com/users/zdzichukowalski", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "Somehow I created the issue twice🙈 This one is an exact duplicate of #7664." ]
2025-07-01T17:14:53Z
2025-07-01T17:17:48Z
2025-07-01T17:17:48Z
NONE
null
null
null
null
### Describe the bug When loading a `.jsonl` file using `load_dataset("json", data_files="data.jsonl", split="train")`, the function misinterprets the content of a string field as if it were part of the dataset schema. In my case there is a field `body:` with a string value ``` "### Describe the bug (...) ,action: string, datetime: timestamp[s], author: string, (...) Pandas version: 1.3.4" ``` As a result, I got an exception ``` "TypeError: Couldn't cast array of type timestamp[s] to null". ``` Full stack-trace in the attached file below. I also attach a minimized dataset (data.json, a single entry) that reproduces the error. **Observations**(on the minimal example): - if I remove _all fields before_ `body`, a different error appears, - if I remove _all fields after_ `body`, yet another error appears, - if `body` is _the only field_, the error disappears. So this might be one complex bug or several edge cases interacting. I haven’t dug deeper. Also changing the file extension to `.json` or `.txt` avoids the problem. This suggests **a possible workaround** for the general case: convert `.jsonl` to `.json`. Though I haven’t verified correctness of that workaround yet. Anyway my understanding is that `load_dataset` with first argument set to "json" should properly handle `.jsonl` files. Correct me if I'm wrong. [stack_trace.txt](https://github.com/user-attachments/files/21004153/stack_trace.txt) [data.json](https://github.com/user-attachments/files/21004164/data.json) P.S. I discovered this while going through the HuggingFace tutorial. Specifically [this part](https://huggingface.co/learn/llm-course/chapter5/5?fw=pt).I will try to inform the tutorial team about this issue, as it can be a showstopper for young 🤗 adepts. ### Steps to reproduce the bug 1. Download attached [data.json](https://github.com/user-attachments/files/21004164/data.json) file. 2. Run the following code which should work correctly: ``` from datasets import load_dataset load_dataset("json", data_files="data.json", split="train") ``` 3. Change extension of the `data` file to `.jsonl` and run: ``` from datasets import load_dataset load_dataset("json", data_files="data.jsonl", split="train") ``` This will trigger an error like the one in the attached [stack_trace.txt](https://github.com/user-attachments/files/21004153/stack_trace.txt). One can also try removing fields before the `body` field and after it. These actions give different errors. ### Expected behavior Parsing data in `.jsonl` format should yield the same result as parsing the same data in `.json` format. In any case, the content of a string field should never be interpreted as part of the dataset schema. ### Environment info datasets version: _3.6.0_ pyarrow version: _20.0.0_ Python version: _3.11.9_ platform version: _macOS-15.5-arm64-arm-64bit_
{ "avatar_url": "https://avatars.githubusercontent.com/u/1151198?v=4", "events_url": "https://api.github.com/users/zdzichukowalski/events{/privacy}", "followers_url": "https://api.github.com/users/zdzichukowalski/followers", "following_url": "https://api.github.com/users/zdzichukowalski/following{/other_user}", "gists_url": "https://api.github.com/users/zdzichukowalski/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/zdzichukowalski", "id": 1151198, "login": "zdzichukowalski", "node_id": "MDQ6VXNlcjExNTExOTg=", "organizations_url": "https://api.github.com/users/zdzichukowalski/orgs", "received_events_url": "https://api.github.com/users/zdzichukowalski/received_events", "repos_url": "https://api.github.com/users/zdzichukowalski/repos", "site_admin": false, "starred_url": "https://api.github.com/users/zdzichukowalski/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/zdzichukowalski/subscriptions", "type": "User", "url": "https://api.github.com/users/zdzichukowalski", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7665/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7665/timeline
null
duplicate
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7664
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7664/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7664/comments
https://api.github.com/repos/huggingface/datasets/issues/7664/events
https://github.com/huggingface/datasets/issues/7664
3,193,239,035
I_kwDODunzps6-VPX7
7,664
Function load_dataset() misinterprets string field content as part of dataset schema when dealing with `.jsonl` files
{ "avatar_url": "https://avatars.githubusercontent.com/u/1151198?v=4", "events_url": "https://api.github.com/users/zdzichukowalski/events{/privacy}", "followers_url": "https://api.github.com/users/zdzichukowalski/followers", "following_url": "https://api.github.com/users/zdzichukowalski/following{/other_user}", "gists_url": "https://api.github.com/users/zdzichukowalski/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/zdzichukowalski", "id": 1151198, "login": "zdzichukowalski", "node_id": "MDQ6VXNlcjExNTExOTg=", "organizations_url": "https://api.github.com/users/zdzichukowalski/orgs", "received_events_url": "https://api.github.com/users/zdzichukowalski/received_events", "repos_url": "https://api.github.com/users/zdzichukowalski/repos", "site_admin": false, "starred_url": "https://api.github.com/users/zdzichukowalski/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/zdzichukowalski/subscriptions", "type": "User", "url": "https://api.github.com/users/zdzichukowalski", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "Hey @zdzichukowalski, I was not able to reproduce this on python 3.11.9 and datasets 3.6.0. The contents of \"body\" are correctly parsed as a string and no other fields like timestamps are created. Could you try reproducing this in a fresh environment, or posting the complete code where you encountered that stacktrace? (I noticed in the stacktrace you had a bigger program, perhaps there are some side effects)", "Hi @zdzichukowalski, thanks for reporting this!\n\nTo help investigate this further, could you please share the following:\n\nExact contents of the data.jsonl file you're using — especially the first few lines that trigger the error.\n\nThe full code snippet you used to run load_dataset(), along with any environment setup (if not already shared).\n\nCan you confirm whether the issue persists when running in a clean virtual environment (e.g., with only datasets, pyarrow, and their dependencies)?\n\nIf possible, could you try running the same with an explicit features schema, like:\n\n```\nfrom datasets import load_dataset, Features, Value\nfeatures = Features({\"body\": Value(\"string\")})\nds = load_dataset(\"json\", data_files=\"data.jsonl\", split=\"train\", features=features)\n```\nAlso, just to clarify — does the \"body\" field contain plain string content, or is it sometimes being parsed from multi-line or structured inputs (like embedded JSON or CSV-like text)?\n\nOnce we have this info, we can check whether this is a schema inference issue, a PyArrow type coercion bug, or something else.", "Ok I can confirm that I also cannot reproduce the error in a clean environment with the minimized version of the dataset that I provided. Same story for the old environment. Nonetheless the bug still happens in the new environment with the full version of the dataset, which I am providing now. Please let me know if now you can reproduce the problem.\n\nAdditionally I'm attaching result of the `pip freeze` command.\n\n[datasets-issues.jsonl.zip](https://github.com/user-attachments/files/21081755/datasets-issues.jsonl.zip)\n[requirements.txt](https://github.com/user-attachments/files/21081776/requirements.txt)\n\n@ArjunJagdale running with explicit script gives the following stack:\n[stack_features_version.txt](https://github.com/user-attachments/files/21082056/stack_features_version.txt)\n\nThe problematic `body` field seems to be e.g. content of [this comment](https://github.com/huggingface/datasets/issues/5596#issue-1604919993) from Github in which someone provided a stack trace containing json structure ;) I would say that it is intended to be a plain string. \n\nTo find a part that triggers an error, simply search for the \"timestamp[s]\" in the dataset. There are few such entries.\n\nI think I provided all the information you asked. \n\nOh, and workaround I suggested, that is convert `.jsonl` to `.json` worked for me.\n\nP.S\n1. @itsmejul the stack trace I provided is coming from running the two-liner script that I attached. There is no bigger program, although there were some jupiter files alongside the script, which were run in the same env. I am not sure what part of the stack trace suggests that there is something more ;) \n\n2. Is it possible that on some layer in the python/env/jupiter there is some caching mechanism for files that would give false results for my minimized version of the dataset file? There is of course possibility that I made a mistake and run the script with the wrong file, but I double and triple checked things before creating an issue. Earlier I wrote that \"(...) changing the file extension to `.json` or `.txt` avoids the problem\". But with the full version this is not true(when I change to `txt`), and minimized version always works. So it looks like that when I changed the extension to e.g. `txt` then a minimized file loaded from the disk and it was parsed correctly, but every time when I changed back to `jsonl` my script must have used an original content of the file - the one before I made a minimization. But this is still all strange because I even removed the fields before and after the body from my minimized `jsonl` and there were some different errors(I mention it in my original post), so I do not get why today I cannot reproduce it in the original env... \n\n", "Hi @zdzichukowalski, thanks again for the detailed info and files!\n\nI’ve reviewed the `datasets-issues.jsonl` you shared, and I can now confirm the issue with full clarity:\n\nSome entries in the `\"body\"` field contain string content that resembles schema definitions — for example:\n\n```\nstruct<type: string, action: string, datetime: timestamp[s], ...>\n```\n\nThese strings appear to be copied from GitHub comments or stack traces (e.g., from #5596)\n\nWhen using the `.jsonl` format, `load_dataset()` relies on row-wise schema inference via PyArrow. If some rows contain real structured fields like `pull_request.merged_at` (a valid timestamp), and others contain schema-like text inside string fields, PyArrow can get confused while unifying the schema — leading to cast errors.\n\nThat’s why:\n\n* Using a reduced schema like `features={\"body\": Value(\"string\")}` fails — because the full table has many more fields.\n* Converting the file to `.json` (a list of objects) works — because global schema inference kicks in.\n* Filtering the dataset to only the `body` field avoids the issue entirely.\n\n### Suggested Workarounds\n\n* Convert the `.jsonl` file to `.json` to enable global schema inference.\n* Or, preprocess the `.jsonl` file to extract only the `\"body\"` field if that’s all you need.", "So in summary should we treat it as a low severity bug in `PyArrow`, in `Datasets` library, or as a proper behavior and do nothing with it?", "You are right actually! I’d also categorize this as a low-severity schema inference edge case, mainly stemming from PyArrow, but exposed by how datasets handles .jsonl inputs.\n\nIt's not a bug in datasets per se, but confusing when string fields (like body) contain text that resembles schema — e.g., \"timestamp[s]\".\n\nMaybe @lhoestq — could this be considered as a small feature/improvement?" ]
2025-07-01T17:14:32Z
2025-07-09T13:14:11Z
null
NONE
null
null
null
null
### Describe the bug When loading a `.jsonl` file using `load_dataset("json", data_files="data.jsonl", split="train")`, the function misinterprets the content of a string field as if it were part of the dataset schema. In my case there is a field `body:` with a string value ``` "### Describe the bug (...) ,action: string, datetime: timestamp[s], author: string, (...) Pandas version: 1.3.4" ``` As a result, I got an exception ``` "TypeError: Couldn't cast array of type timestamp[s] to null". ``` Full stack-trace in the attached file below. I also attach a minimized dataset (data.json, a single entry) that reproduces the error. **Observations**(on the minimal example): - if I remove _all fields before_ `body`, a different error appears, - if I remove _all fields after_ `body`, yet another error appears, - if `body` is _the only field_, the error disappears. So this might be one complex bug or several edge cases interacting. I haven’t dug deeper. Also changing the file extension to `.json` or `.txt` avoids the problem. This suggests **a possible workaround** for the general case: convert `.jsonl` to `.json`. Though I haven’t verified correctness of that workaround yet. Anyway my understanding is that `load_dataset` with first argument set to "json" should properly handle `.jsonl` files. Correct me if I'm wrong. [stack_trace.txt](https://github.com/user-attachments/files/21004153/stack_trace.txt) [data.json](https://github.com/user-attachments/files/21004164/data.json) P.S. I discovered this while going through the HuggingFace tutorial. Specifically [this part](https://huggingface.co/learn/llm-course/chapter5/5?fw=pt). I will try to inform the tutorial team about this issue, as it can be a showstopper for young 🤗 adepts. ### Steps to reproduce the bug 1. Download attached [data.json](https://github.com/user-attachments/files/21004164/data.json) file. 2. Run the following code which should work correctly: ``` from datasets import load_dataset load_dataset("json", data_files="data.json", split="train") ``` 3. Change extension of the `data` file to `.jsonl` and run: ``` from datasets import load_dataset load_dataset("json", data_files="data.jsonl", split="train") ``` This will trigger an error like the one in the attached [stack_trace.txt](https://github.com/user-attachments/files/21004153/stack_trace.txt). One can also try removing fields before the `body` field and after it. These actions give different errors. ### Expected behavior Parsing data in `.jsonl` format should yield the same result as parsing the same data in `.json` format. In any case, the content of a string field should never be interpreted as part of the dataset schema. ### Environment info datasets version: _3.6.0_ pyarrow version: _20.0.0_ Python version: _3.11.9_ platform version: _macOS-15.5-arm64-arm-64bit_
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7664/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7664/timeline
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7662
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7662/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7662/comments
https://api.github.com/repos/huggingface/datasets/issues/7662/events
https://github.com/huggingface/datasets/issues/7662
3,190,805,531
I_kwDODunzps6-L9Qb
7,662
Applying map after transform with multiprocessing will cause OOM
{ "avatar_url": "https://avatars.githubusercontent.com/u/26482910?v=4", "events_url": "https://api.github.com/users/JunjieLl/events{/privacy}", "followers_url": "https://api.github.com/users/JunjieLl/followers", "following_url": "https://api.github.com/users/JunjieLl/following{/other_user}", "gists_url": "https://api.github.com/users/JunjieLl/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/JunjieLl", "id": 26482910, "login": "JunjieLl", "node_id": "MDQ6VXNlcjI2NDgyOTEw", "organizations_url": "https://api.github.com/users/JunjieLl/orgs", "received_events_url": "https://api.github.com/users/JunjieLl/received_events", "repos_url": "https://api.github.com/users/JunjieLl/repos", "site_admin": false, "starred_url": "https://api.github.com/users/JunjieLl/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/JunjieLl/subscriptions", "type": "User", "url": "https://api.github.com/users/JunjieLl", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "Hi ! `add_column` loads the full column data in memory:\n\nhttps://github.com/huggingface/datasets/blob/bfa497b1666f4c58bd231c440d8b92f9859f3a58/src/datasets/arrow_dataset.py#L6021-L6021\n\na workaround to add the new column is to include the new data in the map() function instead, which only loads one batch at a time", "> Hi ! `add_column` loads the full column data in memory:\n> \n> [datasets/src/datasets/arrow_dataset.py](https://github.com/huggingface/datasets/blob/bfa497b1666f4c58bd231c440d8b92f9859f3a58/src/datasets/arrow_dataset.py#L6021-L6021)\n> \n> Line 6021 in [bfa497b](/huggingface/datasets/commit/bfa497b1666f4c58bd231c440d8b92f9859f3a58)\n> \n> column_table = InMemoryTable.from_pydict({name: column}, schema=pyarrow_schema) \n> a workaround to add the new column is to include the new data in the map() function instead, which only loads one batch at a time\n\n\nHow about cast_column,since map cannot apply type transformation, e.g. Audio(16000) to Audio(24000)", "cast_column calls `pyarrow.Table.cast` on the full dataset which I believe the memory usage depends on the source and target types but should be low in general\n\ncasting from Audio(16000) to Audio(24000) is cheap since the source and target arrow types are the same", "> cast_column calls `pyarrow.Table.cast` on the full dataset which I believe the memory usage depends on the source and target types but should be low in general\n> \n> casting from Audio(16000) to Audio(24000) is cheap since the source and target arrow types are the same\n\nThanks for replying. So the OOM is caused by add_column operation. When I skip the operation, low memory will be achieved. Right?", "> Hi ! `add_column` loads the full column data in memory:\n> \n> [datasets/src/datasets/arrow_dataset.py](https://github.com/huggingface/datasets/blob/bfa497b1666f4c58bd231c440d8b92f9859f3a58/src/datasets/arrow_dataset.py#L6021-L6021)\n> \n> Line 6021 in [bfa497b](/huggingface/datasets/commit/bfa497b1666f4c58bd231c440d8b92f9859f3a58)\n> \n> column_table = InMemoryTable.from_pydict({name: column}, schema=pyarrow_schema) \n> a workaround to add the new column is to include the new data in the map() function instead, which only loads one batch at a time\n\n\nNote num_process=1 would not cause OOM. I'm confused.\n\n" ]
2025-07-01T05:45:57Z
2025-07-10T06:17:40Z
null
NONE
null
null
null
null
### Describe the bug I have a 30TB dataset. When I perform add_column and cast_column operations on it and then execute a multiprocessing map, it results in an OOM (Out of Memory) error. However, if I skip the add_column and cast_column steps and directly run the map, there is no OOM. After debugging step by step, I found that the OOM is caused at this point, and I suspect it’s because the add_column and cast_column operations are not cached, which causes the entire dataset to be loaded in each subprocess, leading to the OOM. The critical line of code is: https://github.com/huggingface/datasets/blob/e71b0b19d79c7531f9b9bea7c09916b5f6157f42/src/datasets/utils/py_utils.py#L607 Note num_process=1 would not cause OOM. I'm confused. ### Steps to reproduce the bug For reproduce, you can load dataset and set cache_dir (for caching): amphion/Emilia-Dataset which is a veru large datasets that RAM can not fits. And apply the map with multiprocessing after a transform operation (e.g. add_column, cast_column). As long as num_process>1, it must cause OOM. ### Expected behavior It should not cause OOM. ### Environment info - `datasets` version: 3.6.0 - Platform: Linux-5.10.134-16.101.al8.x86_64-x86_64-with-glibc2.35 - Python version: 3.10.12 - `huggingface_hub` version: 0.33.1 - PyArrow version: 20.0.0 - Pandas version: 2.3.0 - `fsspec` version: 2024.6.1
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7662/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7662/timeline
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7660
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7660/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7660/comments
https://api.github.com/repos/huggingface/datasets/issues/7660/events
https://github.com/huggingface/datasets/issues/7660
3,189,028,251
I_kwDODunzps6-FLWb
7,660
AttributeError: type object 'tqdm' has no attribute '_lock'
{ "avatar_url": "https://avatars.githubusercontent.com/u/44766273?v=4", "events_url": "https://api.github.com/users/Hypothesis-Z/events{/privacy}", "followers_url": "https://api.github.com/users/Hypothesis-Z/followers", "following_url": "https://api.github.com/users/Hypothesis-Z/following{/other_user}", "gists_url": "https://api.github.com/users/Hypothesis-Z/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/Hypothesis-Z", "id": 44766273, "login": "Hypothesis-Z", "node_id": "MDQ6VXNlcjQ0NzY2Mjcz", "organizations_url": "https://api.github.com/users/Hypothesis-Z/orgs", "received_events_url": "https://api.github.com/users/Hypothesis-Z/received_events", "repos_url": "https://api.github.com/users/Hypothesis-Z/repos", "site_admin": false, "starred_url": "https://api.github.com/users/Hypothesis-Z/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Hypothesis-Z/subscriptions", "type": "User", "url": "https://api.github.com/users/Hypothesis-Z", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "Deleting a class (**not instance**) attribute might be invalid in this case, which is `tqdm` doing in `ensure_lock`.\n\n```python\nfrom tqdm import tqdm as old_tqdm\n\nclass tqdm1(old_tqdm):\n def __delattr__(self, attr):\n try:\n super().__delattr__(attr)\n except AttributeError:\n if attr != '_lock':\n print(attr)\n raise\n\nclass Meta(type):\n def __delattr__(cls, name):\n if name == \"_lock\":\n return \n return super().__delattr__(name)\n \nclass tqdm2(old_tqdm, metaclass=Meta):\n pass\n\ndel tqdm2._lock\ndel tqdm1._lock # error\n```\n\nhttps://github.com/huggingface/datasets/blob/e71b0b19d79c7531f9b9bea7c09916b5f6157f42/src/datasets/utils/tqdm.py#L104-L122", "A cheaper option (seems to work in my case): \n```python\nfrom datasets import tqdm as hf_tqdm\nhf_tqdm.set_lock(hf_tqdm.get_lock())\n```" ]
2025-06-30T15:57:16Z
2025-07-03T15:14:27Z
null
NONE
null
null
null
null
### Describe the bug `AttributeError: type object 'tqdm' has no attribute '_lock'` It occurs when I'm trying to load datasets in thread pool. Issue https://github.com/huggingface/datasets/issues/6066 and PR https://github.com/huggingface/datasets/pull/6067 https://github.com/huggingface/datasets/pull/6068 tried to fix this. ### Steps to reproduce the bug Will have to try several times to reproduce the error because it is concerned with threads. 1. save some datasets for test ```pythonfrom datasets import Dataset, DatasetDict import os os.makedirs("test_dataset_shards", exist_ok=True) for i in range(10): data = Dataset.from_dict({"text": [f"example {j}" for j in range(1000000)]}) data = DatasetDict({'train': data}) data.save_to_disk(f"test_dataset_shards/shard_{i}") ``` 2. load them in a thread pool ```python from datasets import load_from_disk from tqdm import tqdm from concurrent.futures import ThreadPoolExecutor, as_completed import glob datas = glob.glob('test_dataset_shards/shard_*') with ThreadPoolExecutor(max_workers=10) as pool: futures = [pool.submit(load_from_disk, it) for it in datas] datas = [] for future in tqdm(as_completed(futures), total=len(futures)): datas.append(future.result()) ``` ### Expected behavior no exception raised ### Environment info datasets==2.19.0 python==3.10
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7660/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7660/timeline
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7650
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7650/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7650/comments
https://api.github.com/repos/huggingface/datasets/issues/7650/events
https://github.com/huggingface/datasets/issues/7650
3,182,745,315
I_kwDODunzps69tNbj
7,650
`load_dataset` defaults to json file format for datasets with 1 shard
{ "avatar_url": "https://avatars.githubusercontent.com/u/6965756?v=4", "events_url": "https://api.github.com/users/iPieter/events{/privacy}", "followers_url": "https://api.github.com/users/iPieter/followers", "following_url": "https://api.github.com/users/iPieter/following{/other_user}", "gists_url": "https://api.github.com/users/iPieter/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/iPieter", "id": 6965756, "login": "iPieter", "node_id": "MDQ6VXNlcjY5NjU3NTY=", "organizations_url": "https://api.github.com/users/iPieter/orgs", "received_events_url": "https://api.github.com/users/iPieter/received_events", "repos_url": "https://api.github.com/users/iPieter/repos", "site_admin": false, "starred_url": "https://api.github.com/users/iPieter/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/iPieter/subscriptions", "type": "User", "url": "https://api.github.com/users/iPieter", "user_view_type": "public" }
[]
open
false
null
[]
null
[]
2025-06-27T12:54:25Z
2025-06-27T12:54:25Z
null
NONE
null
null
null
null
### Describe the bug I currently have multiple datasets (train+validation) saved as 50MB shards. For one dataset the validation pair is small enough to fit into a single shard and this apparently causes problems when loading the dataset. I created the datasets using a DatasetDict, saved them as 50MB arrow files for streaming and then load each dataset. I have no problem loading any of the other datasets with more than 1 arrow file/shard. The error indicates the training set got loaded in arrow format (correct) and the validation set in json (incorrect). This seems to be because some of the metadata files are considered as dataset files. ``` Error loading /nfs/dataset_pt-uk: Couldn't infer the same data file format for all splits. Got {NamedSplit('train'): ('arrow', {}), NamedSplit('validation'): ('json', {})} ``` ![Image](https://github.com/user-attachments/assets/f6e7596a-dd53-46a9-9a23-4e9cac2ac049) Concretely, there is a mismatch between the metadata created by the `DatasetDict.save_to_file` and the builder for `datasets.load_dataset`: https://github.com/huggingface/datasets/blob/e71b0b19d79c7531f9b9bea7c09916b5f6157f42/src/datasets/data_files.py#L107 The `folder_based_builder` lists all files and with 1 arrow file the json files (that are actually metadata) are in the majority. https://github.com/huggingface/datasets/blob/e71b0b19d79c7531f9b9bea7c09916b5f6157f42/src/datasets/packaged_modules/folder_based_builder/folder_based_builder.py#L58 ### Steps to reproduce the bug Create a dataset with metadata and 1 arrow file in validation and multiple arrow files in the training set, following the above description. In my case, I saved the files via: ```python dataset = DatasetDict({ 'train': train_dataset, 'validation': val_dataset }) dataset.save_to_disk(output_path, max_shard_size="50MB") ``` ### Expected behavior The dataset would get loaded. ### Environment info - `datasets` version: 3.6.0 - Platform: Linux-6.14.0-22-generic-x86_64-with-glibc2.41 - Python version: 3.12.7 - `huggingface_hub` version: 0.31.1 - PyArrow version: 18.1.0 - Pandas version: 2.2.3 - `fsspec` version: 2024.6.1
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7650/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7650/timeline
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7647
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7647/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7647/comments
https://api.github.com/repos/huggingface/datasets/issues/7647/events
https://github.com/huggingface/datasets/issues/7647
3,178,952,517
I_kwDODunzps69evdF
7,647
loading mozilla-foundation--common_voice_11_0 fails
{ "avatar_url": "https://avatars.githubusercontent.com/u/5703039?v=4", "events_url": "https://api.github.com/users/pavel-esir/events{/privacy}", "followers_url": "https://api.github.com/users/pavel-esir/followers", "following_url": "https://api.github.com/users/pavel-esir/following{/other_user}", "gists_url": "https://api.github.com/users/pavel-esir/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/pavel-esir", "id": 5703039, "login": "pavel-esir", "node_id": "MDQ6VXNlcjU3MDMwMzk=", "organizations_url": "https://api.github.com/users/pavel-esir/orgs", "received_events_url": "https://api.github.com/users/pavel-esir/received_events", "repos_url": "https://api.github.com/users/pavel-esir/repos", "site_admin": false, "starred_url": "https://api.github.com/users/pavel-esir/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/pavel-esir/subscriptions", "type": "User", "url": "https://api.github.com/users/pavel-esir", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "@claude Could you please address this issue", "kinda related: https://github.com/huggingface/datasets/issues/7675" ]
2025-06-26T12:23:48Z
2025-07-10T14:49:30Z
null
NONE
null
null
null
null
### Describe the bug Hello everyone, i am trying to load `mozilla-foundation--common_voice_11_0` and it fails. Reproducer ``` import datasets datasets.load_dataset("mozilla-foundation/common_voice_11_0", "en", split="test", streaming=True, trust_remote_code=True) ``` and it fails with ``` File ~/opt/envs/.../lib/python3.10/site-packages/datasets/utils/file_utils.py:827, in _add_retries_to_file_obj_read_method.<locals>.read_with_retries(*args, **kwargs) 825 for retry in range(1, max_retries + 1): 826 try: --> 827 out = read(*args, **kwargs) 828 break 829 except ( 830 _AiohttpClientError, 831 asyncio.TimeoutError, 832 requests.exceptions.ConnectionError, 833 requests.exceptions.Timeout, 834 ) as err: File /usr/lib/python3.10/codecs.py:322, in BufferedIncrementalDecoder.decode(self, input, final) 319 def decode(self, input, final=False): 320 # decode input (taking the buffer into account) 321 data = self.buffer + input --> 322 (result, consumed) = self._buffer_decode(data, self.errors, final) 323 # keep undecoded input until the next call 324 self.buffer = data[consumed:] UnicodeDecodeError: 'utf-8' codec can't decode byte 0x8b in position 1: invalid start byte ``` When i remove streaming then everything is good but i need `streaming=True` ### Steps to reproduce the bug ``` import datasets datasets.load_dataset("mozilla-foundation/common_voice_11_0", "en", split="test", streaming=True, trust_remote_code=True) ``` ### Expected behavior Expected that it will download dataset ### Environment info datasets==3.6.0 python3.10 on all platforms linux/win/mac
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7647/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7647/timeline
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7637
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7637/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7637/comments
https://api.github.com/repos/huggingface/datasets/issues/7637/events
https://github.com/huggingface/datasets/issues/7637
3,171,883,522
I_kwDODunzps69DxoC
7,637
Introduce subset_name as an alias of config_name
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
open
false
null
[]
null
[ "I second this! When you come from the Hub, the intuitive question is \"how do I set the subset name\", and it's not easily answered from the docs: `subset_name` would answer this directly.", "I've submitted PR [#7657](https://github.com/huggingface/datasets/pull/7657) to introduce subset_name as a user-facing alias for name in load_dataset, keeping terminology consistent with the Hub UI (“Subset”). It’s fully backward-compatible and includes a conflict check.\n\nLet me know if you'd like me to include tests as part of the PR — happy to add them if needed!", "The main usage is as a positional argument anyway, so I wouldn't necessarily agree that we need an alias (with the risk of confusing users). But happy to have more mentions in the docs of syntaxes like `load_dataset(\"dataset_name\", \"subset_name\")`", "> The main usage is as a positional argument anyway, so I wouldn't necessarily agree that we need an alias (with the risk of confusing users). But happy to have more mentions in the docs of syntaxes like `load_dataset(\"dataset_name\", \"subset_name\")`\n\nThanks @lhoestq, totally fair point — especially with positional usage being the norm. I’m happy to align with the team’s direction here. If you'd prefer, I can update this PR to shift the focus to documentation/examples (e.g., showing \"subset_name\" as the second arg)." ]
2025-06-24T12:49:01Z
2025-07-01T16:08:33Z
null
MEMBER
null
null
null
null
### Feature request Add support for `subset_name` as an alias for `config_name` in the datasets library and related tools (such as loading scripts, documentation, and metadata). ### Motivation The Hugging Face Hub dataset viewer displays a column named **"Subset"**, which refers to what is currently technically called config_name in the datasets library. This inconsistency has caused confusion for many users, especially those unfamiliar with the internal terminology. I have repeatedly received questions from users trying to understand what "config" means, and why it doesn’t match what they see as "subset" on the Hub. Renaming everything to `subset_name` might be too disruptive, but introducing subset_name as a clear alias for config_name could significantly improve user experience without breaking backward compatibility. This change would: - Align terminology across the Hub UI and datasets codebase - Reduce user confusion, especially for newcomers - Make documentation and examples more intuitive
null
{ "+1": 1, "-1": 0, "confused": 0, "eyes": 0, "heart": 1, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 2, "url": "https://api.github.com/repos/huggingface/datasets/issues/7637/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7637/timeline
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7636
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7636/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7636/comments
https://api.github.com/repos/huggingface/datasets/issues/7636/events
https://github.com/huggingface/datasets/issues/7636
3,170,878,167
I_kwDODunzps68_8LX
7,636
"open" in globals()["__builtins__"], an error occurs: "TypeError: argument of type 'module' is not iterable"
{ "avatar_url": "https://avatars.githubusercontent.com/u/51187979?v=4", "events_url": "https://api.github.com/users/kuanyan9527/events{/privacy}", "followers_url": "https://api.github.com/users/kuanyan9527/followers", "following_url": "https://api.github.com/users/kuanyan9527/following{/other_user}", "gists_url": "https://api.github.com/users/kuanyan9527/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/kuanyan9527", "id": 51187979, "login": "kuanyan9527", "node_id": "MDQ6VXNlcjUxMTg3OTc5", "organizations_url": "https://api.github.com/users/kuanyan9527/orgs", "received_events_url": "https://api.github.com/users/kuanyan9527/received_events", "repos_url": "https://api.github.com/users/kuanyan9527/repos", "site_admin": false, "starred_url": "https://api.github.com/users/kuanyan9527/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/kuanyan9527/subscriptions", "type": "User", "url": "https://api.github.com/users/kuanyan9527", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "@kuanyan9527 Your query is indeed valid. Following could be its reasoning:\n\nQuoting from https://stackoverflow.com/a/11181607:\n\"By default, when in the `__main__` module,` __builtins__` is the built-in module `__builtin__` (note: no 's'); when in any other module, `__builtins__` is an alias for the dictionary of the `__builtin__` module itself.\"\n\nCan you confirm if you are running the snippet `print(\"open\" in globals()[\"__builtins__\"])` in the default? In that case, as expected, `__builtins__` is a module which is causing the error. But in the codebase, the class `patch_submodule`, is primarily used in the second circumstance, where it acts as a dictionary. Hence causing the code to function successfully.\n\nHope this helps.", "@kuanyan9527 Are there any more queries in this regards, else please feel free to close the issue.\nThank you.", "Your answer is very important to me,thanks.", "I encountered this error when running datasets with pypy,\n`TypeError: argument of type 'module' is not iterable` in [src/datasets/utils/patching.py#L96](https://github.com/huggingface/datasets/blob/3.6.0/src/datasets/utils/patching.py#L96)\nby modifying `globals()[\"__builtins__\"]` to `builtins.__dict__`, importing via `import builtins`.\nCan this be applied to the community?" ]
2025-06-24T08:09:39Z
2025-07-10T04:13:16Z
null
NONE
null
null
null
null
When I run the following code, an error occurs: "TypeError: argument of type 'module' is not iterable" ```python print("open" in globals()["__builtins__"]) ``` Traceback (most recent call last): File "./main.py", line 2, in <module> print("open" in globals()["__builtins__"]) ^^^^^^^^^^^^^^^^^^^^^^ TypeError: argument of type 'module' is not iterable But this code runs fine in datasets, I don't understand why [src/datasets/utils/patching.py#L96](https://github.com/huggingface/datasets/blob/3.6.0/src/datasets/utils/patching.py#L96)
{ "avatar_url": "https://avatars.githubusercontent.com/u/51187979?v=4", "events_url": "https://api.github.com/users/kuanyan9527/events{/privacy}", "followers_url": "https://api.github.com/users/kuanyan9527/followers", "following_url": "https://api.github.com/users/kuanyan9527/following{/other_user}", "gists_url": "https://api.github.com/users/kuanyan9527/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/kuanyan9527", "id": 51187979, "login": "kuanyan9527", "node_id": "MDQ6VXNlcjUxMTg3OTc5", "organizations_url": "https://api.github.com/users/kuanyan9527/orgs", "received_events_url": "https://api.github.com/users/kuanyan9527/received_events", "repos_url": "https://api.github.com/users/kuanyan9527/repos", "site_admin": false, "starred_url": "https://api.github.com/users/kuanyan9527/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/kuanyan9527/subscriptions", "type": "User", "url": "https://api.github.com/users/kuanyan9527", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7636/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7636/timeline
null
reopened
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7633
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7633/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7633/comments
https://api.github.com/repos/huggingface/datasets/issues/7633/events
https://github.com/huggingface/datasets/issues/7633
3,168,399,637
I_kwDODunzps682fEV
7,633
Proposal: Small Tamil Discourse Coherence Dataset.
{ "avatar_url": "https://avatars.githubusercontent.com/u/66418501?v=4", "events_url": "https://api.github.com/users/bikkiNitSrinagar/events{/privacy}", "followers_url": "https://api.github.com/users/bikkiNitSrinagar/followers", "following_url": "https://api.github.com/users/bikkiNitSrinagar/following{/other_user}", "gists_url": "https://api.github.com/users/bikkiNitSrinagar/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/bikkiNitSrinagar", "id": 66418501, "login": "bikkiNitSrinagar", "node_id": "MDQ6VXNlcjY2NDE4NTAx", "organizations_url": "https://api.github.com/users/bikkiNitSrinagar/orgs", "received_events_url": "https://api.github.com/users/bikkiNitSrinagar/received_events", "repos_url": "https://api.github.com/users/bikkiNitSrinagar/repos", "site_admin": false, "starred_url": "https://api.github.com/users/bikkiNitSrinagar/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/bikkiNitSrinagar/subscriptions", "type": "User", "url": "https://api.github.com/users/bikkiNitSrinagar", "user_view_type": "public" }
[]
open
false
null
[]
null
[]
2025-06-23T14:24:40Z
2025-06-23T14:24:40Z
null
NONE
null
null
null
null
I’m a beginner from NIT Srinagar proposing a dataset of 50 Tamil text pairs for discourse coherence (coherent/incoherent labels) to support NLP research in low-resource languages. - Size: 50 samples - Format: CSV with columns (text1, text2, label) - Use case: Training NLP models for coherence I’ll use GitHub’s web editor and Google Colab. Please confirm if this fits.
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7633/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7633/timeline
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7632
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7632/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7632/comments
https://api.github.com/repos/huggingface/datasets/issues/7632/events
https://github.com/huggingface/datasets/issues/7632
3,168,283,589
I_kwDODunzps682CvF
7,632
Graceful Error Handling for cast_column("image", Image(decode=True)) in Hugging Face Datasets
{ "avatar_url": "https://avatars.githubusercontent.com/u/37377515?v=4", "events_url": "https://api.github.com/users/ganiket19/events{/privacy}", "followers_url": "https://api.github.com/users/ganiket19/followers", "following_url": "https://api.github.com/users/ganiket19/following{/other_user}", "gists_url": "https://api.github.com/users/ganiket19/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/ganiket19", "id": 37377515, "login": "ganiket19", "node_id": "MDQ6VXNlcjM3Mzc3NTE1", "organizations_url": "https://api.github.com/users/ganiket19/orgs", "received_events_url": "https://api.github.com/users/ganiket19/received_events", "repos_url": "https://api.github.com/users/ganiket19/repos", "site_admin": false, "starred_url": "https://api.github.com/users/ganiket19/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/ganiket19/subscriptions", "type": "User", "url": "https://api.github.com/users/ganiket19", "user_view_type": "public" }
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
open
false
null
[]
null
[ "Hi! This is now handled in PR #7638", "Thank you for implementing the suggestion it would be great help in our use case. " ]
2025-06-23T13:49:24Z
2025-07-08T06:52:53Z
null
NONE
null
null
null
null
### Feature request Currently, when using dataset.cast_column("image", Image(decode=True)), the pipeline throws an error and halts if any image in the dataset is invalid or corrupted (e.g., truncated files, incorrect formats, unreachable URLs). This behavior disrupts large-scale processing where a few faulty samples are common. reference : https://discuss.huggingface.co/t/handle-errors-when-loading-images-404-corrupted-etc/50318/5 https://discuss.huggingface.co/t/handling-non-existing-url-in-image-dataset-while-cast-column/69185 Proposed Feature Introduce a mechanism (e.g., a continue_on_error=True flag or global error handling mode) in Image(decode=True) that: Skips invalid images and sets them as None, or Logs the error but allows the rest of the dataset to be processed without interruption. Example Usage from datasets import load_dataset, Image dataset = load_dataset("my_dataset") dataset = dataset.cast_column("image", Image(decode=True, continue_on_error=True)) Benefits Ensures robust large-scale image dataset processing. Improves developer productivity by avoiding custom retry/error-handling code. Aligns with best practices in dataset preprocessing pipelines that tolerate minor data corruption. Potential Implementation Options Internally wrap the decoding in a try/except block. Return None or a placeholder on failure. Optionally allow custom error callbacks or logging. ### Motivation Robustness: Large-scale image datasets often contain a small fraction of corrupt files or unreachable URLs. Halting on the first error forces users to write custom workarounds or preprocess externally. Simplicity: A built-in flag removes boilerplate try/except logic around every decode step. Performance: Skipping invalid samples inline is more efficient than a two-pass approach (filter then decode). ### Your contribution 1. API Change Extend datasets.features.Image(decode=True) to accept continue_on_error: bool = False. 2. Behavior If continue_on_error=False (default), maintain current behavior: any decode error raises an exception. If continue_on_error=True, wrap decode logic in try/except: On success: store the decoded image. On failure: log a warning (e.g., via logging.warning) and set the field to None (or a sentinel value). 3. Optional Enhancements Allow a callback hook: Image(decode=True, continue_on_error=True, on_error=lambda idx, url, exc: ...) Emit metrics or counts of skipped images.
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7632/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7632/timeline
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7630
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7630/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7630/comments
https://api.github.com/repos/huggingface/datasets/issues/7630/events
https://github.com/huggingface/datasets/issues/7630
3,164,650,900
I_kwDODunzps68oL2U
7,630
[bug] resume from ckpt skips samples if .map is applied
{ "avatar_url": "https://avatars.githubusercontent.com/u/23004953?v=4", "events_url": "https://api.github.com/users/felipemello1/events{/privacy}", "followers_url": "https://api.github.com/users/felipemello1/followers", "following_url": "https://api.github.com/users/felipemello1/following{/other_user}", "gists_url": "https://api.github.com/users/felipemello1/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/felipemello1", "id": 23004953, "login": "felipemello1", "node_id": "MDQ6VXNlcjIzMDA0OTUz", "organizations_url": "https://api.github.com/users/felipemello1/orgs", "received_events_url": "https://api.github.com/users/felipemello1/received_events", "repos_url": "https://api.github.com/users/felipemello1/repos", "site_admin": false, "starred_url": "https://api.github.com/users/felipemello1/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/felipemello1/subscriptions", "type": "User", "url": "https://api.github.com/users/felipemello1", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "Thanks for reporting this — it looks like a separate but related bug to #7538, which involved sample loss when resuming an `IterableDataset` wrapped in `FormattedExamplesIterable`. That was resolved in #7553 by re-batching the iterable to track offset correctly.\n\nIn this case, the issue seems to arise specifically from applying `.map()` before sharding and checkpointing. That wraps the iterable in `MappedExamplesIterable`, which may not preserve or propagate `shard_example_idx` correctly across `.state_dict()` and `.load_state_dict()` calls.\n\nYou can see that without `.map()`, resume works fine — but with `.map()`, it jumps from sample 9 to 50, skipping the rest of the shard.\n\nI'll dig deeper into how `MappedExamplesIterable` manages offsets and whether it supports proper checkpoint resumption. If not, we might need a fix similar to the one in #7553, or a wrapper to preserve resume metadata.\n\nHappy to help fix it!\n", "Let me know if a dedicated test case is required — happy to add one!" ]
2025-06-21T01:50:03Z
2025-06-29T07:51:32Z
null
NONE
null
null
null
null
### Describe the bug resume from ckpt skips samples if .map is applied Maybe related: https://github.com/huggingface/datasets/issues/7538 ### Steps to reproduce the bug ```python from datasets import Dataset from datasets.distributed import split_dataset_by_node # Create dataset with map transformation def create_dataset(): ds = Dataset.from_dict({"id": list(range(100))}) ds = ds.to_iterable_dataset(num_shards=4) ds = ds.map(lambda x: x) #comment it out to get desired behavior ds = split_dataset_by_node(ds, rank=0, world_size=2) return ds ds = create_dataset() # Iterate and save checkpoint after 10 samples it = iter(ds) for idx, sample in enumerate(it): if idx == 9: # Checkpoint after 10 samples checkpoint = ds.state_dict() print(f"Checkpoint saved at sample: {sample['id']}") break # Continue with original iterator original_next_samples = [] for idx, sample in enumerate(it): original_next_samples.append(sample["id"]) if idx >= 4: break # Resume from checkpoint ds_new = create_dataset() ds_new.load_state_dict(checkpoint) # Get samples from resumed iterator it_new = iter(ds_new) resumed_next_samples = [] for idx, sample in enumerate(it_new): resumed_next_samples.append(sample["id"]) if idx >= 4: break print(f"\nExpected next samples: {original_next_samples}") print(f"Actual next samples: {resumed_next_samples}") print( f"\n❌ BUG: {resumed_next_samples[0] - original_next_samples[0]} samples were skipped!" ) ``` With map ``` Checkpoint saved at sample: 9 Expected next samples: [10, 11, 12, 13, 14] Actual next samples: [50, 51, 52, 53, 54] ❌ BUG: 40 samples were skipped! ``` ### Expected behavior without map ``` Expected next samples: [10, 11, 12, 13, 14] Actual next samples: [10, 11, 12, 13, 14] ❌ BUG: 0 samples were skipped! ``` ### Environment info datasets == 3.6.0
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7630/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7630/timeline
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7627
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7627/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7627/comments
https://api.github.com/repos/huggingface/datasets/issues/7627/events
https://github.com/huggingface/datasets/issues/7627
3,160,544,390
I_kwDODunzps68YhSG
7,627
Creating a HF Dataset from lakeFS with S3 storage takes too much time!
{ "avatar_url": "https://avatars.githubusercontent.com/u/118734142?v=4", "events_url": "https://api.github.com/users/Thunderhead-exe/events{/privacy}", "followers_url": "https://api.github.com/users/Thunderhead-exe/followers", "following_url": "https://api.github.com/users/Thunderhead-exe/following{/other_user}", "gists_url": "https://api.github.com/users/Thunderhead-exe/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/Thunderhead-exe", "id": 118734142, "login": "Thunderhead-exe", "node_id": "U_kgDOBxO9Pg", "organizations_url": "https://api.github.com/users/Thunderhead-exe/orgs", "received_events_url": "https://api.github.com/users/Thunderhead-exe/received_events", "repos_url": "https://api.github.com/users/Thunderhead-exe/repos", "site_admin": false, "starred_url": "https://api.github.com/users/Thunderhead-exe/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Thunderhead-exe/subscriptions", "type": "User", "url": "https://api.github.com/users/Thunderhead-exe", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "### > Update\n\nThe bottleneck, from what I understand, was making one network request per file\n\nFor 30k images, this meant 30k separate GET requests to the MinIO server through the S3 API, and that was killing the performance\n\nUsing webDataset to transform the large number of files to few .tar files and passing “webdataset” instead of “imagefolder” to the load_dataset function worked perfectly (took only ~11s)" ]
2025-06-19T14:28:41Z
2025-06-23T12:39:10Z
2025-06-23T12:39:10Z
NONE
null
null
null
null
Hi, I’m new to HF dataset and I tried to create datasets based on data versioned in **lakeFS** _(**MinIO** S3 bucket as storage backend)_ Here I’m using ±30000 PIL image from MNIST data however it is taking around 12min to execute, which is a lot! From what I understand, it is loading the images into cache then building the dataset. – Please find bellow the execution screenshot – Is there a way to optimize this or am I doing something wrong? Thanks! ![Image](https://github.com/user-attachments/assets/c79257c8-f023-42a9-9e6f-0898b3ea93fe)
{ "avatar_url": "https://avatars.githubusercontent.com/u/118734142?v=4", "events_url": "https://api.github.com/users/Thunderhead-exe/events{/privacy}", "followers_url": "https://api.github.com/users/Thunderhead-exe/followers", "following_url": "https://api.github.com/users/Thunderhead-exe/following{/other_user}", "gists_url": "https://api.github.com/users/Thunderhead-exe/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/Thunderhead-exe", "id": 118734142, "login": "Thunderhead-exe", "node_id": "U_kgDOBxO9Pg", "organizations_url": "https://api.github.com/users/Thunderhead-exe/orgs", "received_events_url": "https://api.github.com/users/Thunderhead-exe/received_events", "repos_url": "https://api.github.com/users/Thunderhead-exe/repos", "site_admin": false, "starred_url": "https://api.github.com/users/Thunderhead-exe/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Thunderhead-exe/subscriptions", "type": "User", "url": "https://api.github.com/users/Thunderhead-exe", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7627/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7627/timeline
null
completed
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7624
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7624/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7624/comments
https://api.github.com/repos/huggingface/datasets/issues/7624/events
https://github.com/huggingface/datasets/issues/7624
3,156,136,624
I_kwDODunzps68HtKw
7,624
#Dataset Make "image" column appear first in dataset preview UI
{ "avatar_url": "https://avatars.githubusercontent.com/u/98875217?v=4", "events_url": "https://api.github.com/users/jcerveto/events{/privacy}", "followers_url": "https://api.github.com/users/jcerveto/followers", "following_url": "https://api.github.com/users/jcerveto/following{/other_user}", "gists_url": "https://api.github.com/users/jcerveto/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/jcerveto", "id": 98875217, "login": "jcerveto", "node_id": "U_kgDOBeS3UQ", "organizations_url": "https://api.github.com/users/jcerveto/orgs", "received_events_url": "https://api.github.com/users/jcerveto/received_events", "repos_url": "https://api.github.com/users/jcerveto/repos", "site_admin": false, "starred_url": "https://api.github.com/users/jcerveto/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/jcerveto/subscriptions", "type": "User", "url": "https://api.github.com/users/jcerveto", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "Hi ! It should follow the same order as the order of the keys in the metadata file", "Hi! Thank you for your answer. \n\nAs you said it, I I forced every key in every JSON to have an order using `collections. OrderedDict` in Python. Now, it works!\n\nTY" ]
2025-06-18T09:25:19Z
2025-06-20T07:46:43Z
2025-06-20T07:46:43Z
NONE
null
null
null
null
Hi! #Dataset I’m currently uploading a dataset that includes an `"image"` column (PNG files), along with some metadata columns. The dataset is loaded from a .jsonl file. My goal is to have the "image" column appear as the first column in the dataset card preview UI on the :hugs: Hub. However, at the moment, the `"image"` column is not the first—in fact, it appears last, which is not ideal for the presentation I’d like to achieve. I have a couple of questions: Is there a way to force the dataset card to display the `"image"` column first? Is there currently any way to control or influence the column order in the dataset preview UI? Does the order of keys in the .jsonl file or the features argument affect the display order? Thanks again for your time and help! :blush:
{ "avatar_url": "https://avatars.githubusercontent.com/u/98875217?v=4", "events_url": "https://api.github.com/users/jcerveto/events{/privacy}", "followers_url": "https://api.github.com/users/jcerveto/followers", "following_url": "https://api.github.com/users/jcerveto/following{/other_user}", "gists_url": "https://api.github.com/users/jcerveto/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/jcerveto", "id": 98875217, "login": "jcerveto", "node_id": "U_kgDOBeS3UQ", "organizations_url": "https://api.github.com/users/jcerveto/orgs", "received_events_url": "https://api.github.com/users/jcerveto/received_events", "repos_url": "https://api.github.com/users/jcerveto/repos", "site_admin": false, "starred_url": "https://api.github.com/users/jcerveto/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/jcerveto/subscriptions", "type": "User", "url": "https://api.github.com/users/jcerveto", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7624/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7624/timeline
null
completed
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7619
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7619/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7619/comments
https://api.github.com/repos/huggingface/datasets/issues/7619/events
https://github.com/huggingface/datasets/issues/7619
3,153,058,517
I_kwDODunzps6779rV
7,619
`from_list` fails while `from_generator` works for large datasets
{ "avatar_url": "https://avatars.githubusercontent.com/u/4028948?v=4", "events_url": "https://api.github.com/users/abdulfatir/events{/privacy}", "followers_url": "https://api.github.com/users/abdulfatir/followers", "following_url": "https://api.github.com/users/abdulfatir/following{/other_user}", "gists_url": "https://api.github.com/users/abdulfatir/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/abdulfatir", "id": 4028948, "login": "abdulfatir", "node_id": "MDQ6VXNlcjQwMjg5NDg=", "organizations_url": "https://api.github.com/users/abdulfatir/orgs", "received_events_url": "https://api.github.com/users/abdulfatir/received_events", "repos_url": "https://api.github.com/users/abdulfatir/repos", "site_admin": false, "starred_url": "https://api.github.com/users/abdulfatir/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/abdulfatir/subscriptions", "type": "User", "url": "https://api.github.com/users/abdulfatir", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "@lhoestq any thoughts on this? ", "Thanks for the report! This behavior is expected due to how `from_list()` and `from_generator()` differ internally.\n\n- `from_list()` builds the entire dataset in memory at once, which can easily exceed limits (especially with variable-length arrays or millions of rows). The Arrow error you're seeing (`Value too large to fit in C integer type`) is related to that memory overload.\n- `from_generator()` avoids this issue by batching and streaming data incrementally, which is much more memory-efficient.\n\nSo for large datasets like time series or NLP data with large arrays, `from_generator()` (or `datasets.IterableDataset`) is the recommended approach.\n\nHope this helps clarify the behavior — let me know if you'd like me to point to prior issues/discussions where similar tradeoffs came up!\n", "@ArjunJagdale Yes, it is related to using large dataset but not in the way that you have described. As I understand, the problem here is that `datasets` does not use `LargeList` with 64-bit offsets from PyArrow when using `from_list`. However, with `from_generator` this seems to work okay, likely due to batching. As such, this is more like a bug than an expected outcome. If this is indeed \"expected\", `datasets` should fail more gracefully in these cases with a recommendation to use `from_generator`. ", "Thanks for the clarification — you're absolutely right, this seems tied to the use of 32-bit list offsets in from_list() under the hood. That distinction between List and LargeList in PyArrow is a crucial one, and definitely worth highlighting in the docs or error message. Happy to help if a check or fallback to LargeList makes sense here." ]
2025-06-17T10:58:55Z
2025-06-29T16:34:44Z
null
NONE
null
null
null
null
### Describe the bug I am constructing a large time series dataset and observed that first constructing a list of entries and then using `Dataset.from_list` led to a crash as the number of items became large. However, this is not a problem when using `Dataset.from_generator`. ### Steps to reproduce the bug #### Snippet A (crashes) ```py from tqdm.auto import tqdm import numpy as np import datasets def data_generator(): for i in tqdm(range(10_000_000)): length = np.random.randint(2048) series = np.random.rand(length) yield {"target": series, "item_id": str(i), "start": np.datetime64("2000", "ms")} data_list = list(data_generator()) ds = datasets.Dataset.from_list(data_list) ``` The last line crashes with ``` ArrowInvalid: Value 2147483761 too large to fit in C integer type ``` #### Snippet B (works) ```py from tqdm.auto import tqdm import numpy as np import datasets def data_generator(): for i in tqdm(range(10_000_000)): length = np.random.randint(2048) series = np.random.rand(length) yield {"target": series, "item_id": str(i), "start": np.datetime64("2000", "ms")} ds = datasets.Dataset.from_generator(data_generator) ``` ### Expected behavior I expected both the approaches to work or to fail similarly. ### Environment info ``` - `datasets` version: 3.6.0 - Platform: Linux-6.8.0-1029-aws-x86_64-with-glibc2.35 - Python version: 3.11.11 - `huggingface_hub` version: 0.32.2 - PyArrow version: 19.0.1 - Pandas version: 2.2.3 - `fsspec` version: 2025.3.0 ```
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7619/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7619/timeline
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7617
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7617/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7617/comments
https://api.github.com/repos/huggingface/datasets/issues/7617/events
https://github.com/huggingface/datasets/issues/7617
3,148,102,085
I_kwDODunzps67pDnF
7,617
Unwanted column padding in nested lists of dicts
{ "avatar_url": "https://avatars.githubusercontent.com/u/45557362?v=4", "events_url": "https://api.github.com/users/qgallouedec/events{/privacy}", "followers_url": "https://api.github.com/users/qgallouedec/followers", "following_url": "https://api.github.com/users/qgallouedec/following{/other_user}", "gists_url": "https://api.github.com/users/qgallouedec/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/qgallouedec", "id": 45557362, "login": "qgallouedec", "node_id": "MDQ6VXNlcjQ1NTU3MzYy", "organizations_url": "https://api.github.com/users/qgallouedec/orgs", "received_events_url": "https://api.github.com/users/qgallouedec/received_events", "repos_url": "https://api.github.com/users/qgallouedec/repos", "site_admin": false, "starred_url": "https://api.github.com/users/qgallouedec/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/qgallouedec/subscriptions", "type": "User", "url": "https://api.github.com/users/qgallouedec", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "Answer from @lhoestq:\n\n> No\n> This is because Arrow and Parquet a columnar format: they require a fixed type for each column. So if you have nested dicts, each item should have the same subfields\n\nThe way around I found is the handle it after sampling with this function:\n\n```python\ndef remove_padding(example):\n if isinstance(example, list):\n return [remove_padding(value) if isinstance(value, (dict, list)) else value for value in example]\n elif isinstance(example, Mapping):\n return {\n key: remove_padding(value) if isinstance(value, (dict, list)) else value\n for key, value in example.items()\n if value is not None\n }\n else:\n raise TypeError(\"Input must be a list or a dictionary.\")\n\n# Example:\nexample = next(iter(dataset))\nexample = remove_padding(example)\n```" ]
2025-06-15T22:06:17Z
2025-06-16T13:43:31Z
2025-06-16T13:43:31Z
MEMBER
null
null
null
null
```python from datasets import Dataset dataset = Dataset.from_dict({ "messages": [ [ {"a": "...",}, {"b": "...",}, ], ] }) print(dataset[0]) ``` What I get: ``` {'messages': [{'a': '...', 'b': None}, {'a': None, 'b': '...'}]} ``` What I want: ``` {'messages': [{'a': '...'}, {'b': '...'}]} ``` Is there an easy way to automatically remove these auto-filled null/none values? If not, I probably need a recursive none exclusion function, don't I? Datasets 3.6.0
{ "avatar_url": "https://avatars.githubusercontent.com/u/45557362?v=4", "events_url": "https://api.github.com/users/qgallouedec/events{/privacy}", "followers_url": "https://api.github.com/users/qgallouedec/followers", "following_url": "https://api.github.com/users/qgallouedec/following{/other_user}", "gists_url": "https://api.github.com/users/qgallouedec/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/qgallouedec", "id": 45557362, "login": "qgallouedec", "node_id": "MDQ6VXNlcjQ1NTU3MzYy", "organizations_url": "https://api.github.com/users/qgallouedec/orgs", "received_events_url": "https://api.github.com/users/qgallouedec/received_events", "repos_url": "https://api.github.com/users/qgallouedec/repos", "site_admin": false, "starred_url": "https://api.github.com/users/qgallouedec/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/qgallouedec/subscriptions", "type": "User", "url": "https://api.github.com/users/qgallouedec", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7617/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7617/timeline
null
completed
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7612
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7612/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7612/comments
https://api.github.com/repos/huggingface/datasets/issues/7612/events
https://github.com/huggingface/datasets/issues/7612
3,141,905,049
I_kwDODunzps67RaqZ
7,612
Provide an option of robust dataset iterator with error handling
{ "avatar_url": "https://avatars.githubusercontent.com/u/40016222?v=4", "events_url": "https://api.github.com/users/wwwjn/events{/privacy}", "followers_url": "https://api.github.com/users/wwwjn/followers", "following_url": "https://api.github.com/users/wwwjn/following{/other_user}", "gists_url": "https://api.github.com/users/wwwjn/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/wwwjn", "id": 40016222, "login": "wwwjn", "node_id": "MDQ6VXNlcjQwMDE2MjIy", "organizations_url": "https://api.github.com/users/wwwjn/orgs", "received_events_url": "https://api.github.com/users/wwwjn/received_events", "repos_url": "https://api.github.com/users/wwwjn/repos", "site_admin": false, "starred_url": "https://api.github.com/users/wwwjn/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/wwwjn/subscriptions", "type": "User", "url": "https://api.github.com/users/wwwjn", "user_view_type": "public" }
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
open
false
null
[]
null
[ "Hi ! Maybe we can add a parameter to the Image() type to make it to return `None` instead of raising an error in case of corruption ? Would that help ?", "Hi! 👋🏼 I just opened PR [#7638](https://github.com/huggingface/datasets/pull/7638) to address this issue.\n\n### 🔧 What it does:\nIt adds an `ignore_decode_errors` flag to the `Image` feature. When set to `True`, corrupted image samples will be skipped (with a warning), and `None` will be returned instead of raising an exception.\n\nThis allows users to stream datasets that may contain some invalid images without breaking the iteration loop:\n\n```python\nfeatures = Features({\n \"image\": Image(decode=True, ignore_decode_errors=True)\n})\n````\n\n### 🧩 Why this helps:\n\n* Prevents full iteration breakdown during `.streaming=True` usage\n* Enables downstream tooling like Flux (see [[Flux#1290](https://github.com/pytorch/torchtitan/pull/1290)](https://github.com/pytorch/torchtitan/pull/1290)) to implement robust loaders now that `datasets` supports graceful handling\n* Keeps current behavior unchanged unless explicitly opted-in\n\nLet me know if you'd like me to follow up with test coverage or additional enhancements!\n\ncc @lhoestq " ]
2025-06-13T00:40:48Z
2025-06-24T16:52:30Z
null
NONE
null
null
null
null
### Feature request Adding an option to skip corrupted data samples. Currently the datasets behavior is throwing errors if the data sample if corrupted and let user aware and handle the data corruption. When I tried to try-catch the error at user level, the iterator will raise StopIteration when I called next() again. The way I try to do error handling is: (This doesn't work, unfortunately) ``` # Load the dataset with streaming enabled dataset = load_dataset( "pixparse/cc12m-wds", split="train", streaming=True ) # Get an iterator from the dataset iterator = iter(dataset) while True: try: # Try to get the next example example = next(iterator) # Try to access and process the image image = example["jpg"] pil_image = Image.fromarray(np.array(image)) pil_image.verify() # Verify it's a valid image file except StopIteration: # Code path 1 print("\nStopIteration was raised! Reach the end of dataset") raise StopIteration except Exception as e: # Code path 2 errors += 1 print("Error! Skip this sample") cotinue else: successful += 1 ``` This is because the `IterableDataset` already throws an error (reaches Code path 2). And if I continue call next(), it will hit Code path 1. This is because the inner iterator of `IterableDataset`([code](https://github.com/huggingface/datasets/blob/89bd1f971402acb62805ef110bc1059c38b1c8c6/src/datasets/iterable_dataset.py#L2242)) as been stopped, so calling next() on it will raise StopIteration. So I can not skip the corrupted data sample in this way. Would also love to hear any suggestions about creating a robust dataloader. Thanks for your help in advance! ### Motivation ## Public dataset corruption might be common A lot of users would use public dataset, and the public dataset might contains some corrupted data, especially for dataset with image / video etc. I totally understand it's dataset owner and user's responsibility to ensure the data integrity / run data cleaning or preprocessing, but it would be easier for developers who would use the dataset ## Use cases For example, a robust dataloader would be easy for users who want to try quick tests on different dataset, and chose one dataset which fits their needs. So user could use IterableDataloader with `stream=True` to use the dataset easily without downloading and removing corrupted data samples from the dataset. ### Your contribution The error handling might not trivial and might need more careful design.
null
{ "+1": 2, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 2, "url": "https://api.github.com/repos/huggingface/datasets/issues/7612/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7612/timeline
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7611
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7611/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7611/comments
https://api.github.com/repos/huggingface/datasets/issues/7611/events
https://github.com/huggingface/datasets/issues/7611
3,141,383,940
I_kwDODunzps67PbcE
7,611
Code example for dataset.add_column() does not reflect correct way to use function
{ "avatar_url": "https://avatars.githubusercontent.com/u/31388649?v=4", "events_url": "https://api.github.com/users/shaily99/events{/privacy}", "followers_url": "https://api.github.com/users/shaily99/followers", "following_url": "https://api.github.com/users/shaily99/following{/other_user}", "gists_url": "https://api.github.com/users/shaily99/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/shaily99", "id": 31388649, "login": "shaily99", "node_id": "MDQ6VXNlcjMxMzg4NjQ5", "organizations_url": "https://api.github.com/users/shaily99/orgs", "received_events_url": "https://api.github.com/users/shaily99/received_events", "repos_url": "https://api.github.com/users/shaily99/repos", "site_admin": false, "starred_url": "https://api.github.com/users/shaily99/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/shaily99/subscriptions", "type": "User", "url": "https://api.github.com/users/shaily99", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "Hi @shaily99 \n\nThanks for pointing this out — you're absolutely right!\n\nThe current example in the docstring for add_column() implies in-place modification, which is misleading since add_column() actually returns a new dataset.", "#self-assign\n" ]
2025-06-12T19:42:29Z
2025-07-17T13:14:18Z
2025-07-17T13:14:18Z
NONE
null
null
null
null
https://github.com/huggingface/datasets/blame/38d4d0e11e22fdbc4acf373d2421d25abeb43439/src/datasets/arrow_dataset.py#L5925C10-L5925C10 The example seems to suggest that dataset.add_column() can add column inplace, however, this is wrong -- it cannot. It returns a new dataset with the column added to it.
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
{ "+1": 1, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/7611/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7611/timeline
null
completed
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7610
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7610/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7610/comments
https://api.github.com/repos/huggingface/datasets/issues/7610/events
https://github.com/huggingface/datasets/issues/7610
3,141,281,560
I_kwDODunzps67PCcY
7,610
i cant confirm email
{ "avatar_url": "https://avatars.githubusercontent.com/u/187984415?v=4", "events_url": "https://api.github.com/users/lykamspam/events{/privacy}", "followers_url": "https://api.github.com/users/lykamspam/followers", "following_url": "https://api.github.com/users/lykamspam/following{/other_user}", "gists_url": "https://api.github.com/users/lykamspam/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lykamspam", "id": 187984415, "login": "lykamspam", "node_id": "U_kgDOCzRqHw", "organizations_url": "https://api.github.com/users/lykamspam/orgs", "received_events_url": "https://api.github.com/users/lykamspam/received_events", "repos_url": "https://api.github.com/users/lykamspam/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lykamspam/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lykamspam/subscriptions", "type": "User", "url": "https://api.github.com/users/lykamspam", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "Will you please clarify the issue by some screenshots or more in-depth explanation?", "![Image](https://github.com/user-attachments/assets/ebe58239-72ef-43f6-a849-35736878fbf3)\nThis is clarify answer. I have not received a letter.\n\n**The graphic at the top shows how I don't get any letter. Can you show in a clear way how you don't get a letter from me?**" ]
2025-06-12T18:58:49Z
2025-06-27T14:36:47Z
null
NONE
null
null
null
null
### Describe the bug This is dificult, I cant confirm email because I'm not get any email! I cant post forum because I cant confirm email! I can send help desk because... no exist on web page. paragraph 44 ### Steps to reproduce the bug rthjrtrt ### Expected behavior ewtgfwetgf ### Environment info sdgfswdegfwe
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7610/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7610/timeline
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7607
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7607/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7607/comments
https://api.github.com/repos/huggingface/datasets/issues/7607/events
https://github.com/huggingface/datasets/issues/7607
3,135,722,560
I_kwDODunzps6651RA
7,607
Video and audio decoding with torchcodec
{ "avatar_url": "https://avatars.githubusercontent.com/u/49127578?v=4", "events_url": "https://api.github.com/users/TyTodd/events{/privacy}", "followers_url": "https://api.github.com/users/TyTodd/followers", "following_url": "https://api.github.com/users/TyTodd/following{/other_user}", "gists_url": "https://api.github.com/users/TyTodd/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/TyTodd", "id": 49127578, "login": "TyTodd", "node_id": "MDQ6VXNlcjQ5MTI3NTc4", "organizations_url": "https://api.github.com/users/TyTodd/orgs", "received_events_url": "https://api.github.com/users/TyTodd/received_events", "repos_url": "https://api.github.com/users/TyTodd/repos", "site_admin": false, "starred_url": "https://api.github.com/users/TyTodd/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/TyTodd/subscriptions", "type": "User", "url": "https://api.github.com/users/TyTodd", "user_view_type": "public" }
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
closed
false
null
[]
null
[ "Good idea ! let me know if you have any question or if I can help", "@lhoestq Almost finished, but I'm having trouble understanding this test case.\nThis is how it looks originally. The `map` function is called, and then `with_format` is called. According to the test case example[\"video\"] is supposed to be a VideoReader. However, according to the [docs](https://huggingface.co/docs/datasets/package_reference/main_classes#datasets.Dataset.with_format) its supposed to be the type passed into `with_format` (numpy in this case). My implementation with VideoDecoder currently does the latter, is that correct, or should it be a VideoDecoder object instead?\n```\n@require_torchvision\ndef test_dataset_with_video_map_and_formatted(shared_datadir):\n from torchvision.io import VideoReader\n\n video_path = str(shared_datadir / \"test_video_66x50.mov\")\n data = {\"video\": [video_path]}\n features = Features({\"video\": Video()})\n dset = Dataset.from_dict(data, features=features)\n dset = dset.map(lambda x: x).with_format(\"numpy\")\n example = dset[0]\n assert isinstance(example[\"video\"], VideoReader)\n # assert isinstance(example[\"video\"][0], np.ndarray)\n\n # from bytes\n with open(video_path, \"rb\") as f:\n data = {\"video\": [f.read()]}\n dset = Dataset.from_dict(data, features=features)\n dset = dset.map(lambda x: x).with_format(\"numpy\")\n example = dset[0]\n assert isinstance(example[\"video\"], VideoReader)\n # assert isinstance(example[\"video\"][0], np.ndarray)\n\n```", "Hi ! It's maybe more convenient for users to always have a VideoDecoder, since they might only access a few frames and not the full video. So IMO it's fine to always return a VideoDecoder (maybe later we can extend the VideoDecoder to return other types of tensors than numpy arrays though ? 👀 it's not crucial for now though)", "@lhoestq ya that makes sense, looks like this functionality lives in `src/datasets/formatting`, where an exception is made for VideoReader objects to remain as themselves when being formatted. I'll make the necessary changes. ", "@lhoestq I'm assuming this was also the case for torchaudio objects?", "We're not using torchaudio but soundfile. But anyway we unfortunately decode full audio files instead of returning a Reader and it can be interesting to fix this. Currently it always returns a dict {\"array\": np.array(...), \"sampling_rate\": int(...)}, while it would be cool to return a reader with seek() and read() - like methods as for videos.\n\n(there is a way to make the audio change backward compatible anyway by allowing `reader[\"array\"]` to return the full array)", "@lhoestq (sorry for the spam btw)\nLooks like there's a # TODO to have these returned as np.arrays instead. I'm curious why the authors didn't do it initially. Maybe a performance thing?\nThis is from `/src/datasets/formatting/np_formatter.py` line 70\n```\nif config.TORCHVISION_AVAILABLE and \"torchvision\" in sys.modules:\n from torchvision.io import VideoReader\n\n if isinstance(value, VideoReader):\n return value # TODO(QL): set output to np arrays ?\n```", "Oh cool ya this is something that I could implement with torchcodec. I can add that to the PR as well.", "> Looks like there's a # TODO to have these returned as np.arrays instead. I'm curious why the authors didn't do it initially. Maybe a performance thing?\n\nyea that was me, I focused on a simple logic to start with, since I knew there was torchcodec coming and maybe wasn't worth it at the time ^^\n\nbut anyway it's fine to start with a logic without formatting to start with and then iterate", "Hey @lhoestq I ran into an error with this test case for the Audio feature\n\n```\n@require_sndfile\n@require_torchcodec\ndef test_dataset_with_audio_feature_map_is_decoded(shared_datadir):\n audio_path = str(shared_datadir / \"test_audio_44100.wav\")\n data = {\"audio\": [audio_path], \"text\": [\"Hello\"]}\n features = Features({\"audio\": Audio(), \"text\": Value(\"string\")})\n dset = Dataset.from_dict(data, features=features)\n\n def process_audio_sampling_rate_by_example(example):\n sample_rate = example[\"audio\"].get_all_samples().sample_rate\n example[\"double_sampling_rate\"] = 2 * sample_rate\n return example\n\n decoded_dset = dset.map(process_audio_sampling_rate_by_example)\n for item in decoded_dset.cast_column(\"audio\", Audio(decode=False)):\n assert item.keys() == {\"audio\", \"text\", \"double_sampling_rate\"}\n assert item[\"double_sampling_rate\"] == 88200\n\n def process_audio_sampling_rate_by_batch(batch):\n double_sampling_rates = []\n for audio in batch[\"audio\"]:\n double_sampling_rates.append(2 * audio.get_all_samples().sample_rate)\n batch[\"double_sampling_rate\"] = double_sampling_rates\n return batch\n\n decoded_dset = dset.map(process_audio_sampling_rate_by_batch, batched=True)\n for item in decoded_dset.cast_column(\"audio\", Audio(decode=False)):\n assert item.keys() == {\"audio\", \"text\", \"double_sampling_rate\"}\n assert item[\"double_sampling_rate\"] == 88200\n```\n\nthis is the error below\n```\nsrc/datasets/arrow_writer.py:626: in write_batch\n arrays.append(pa.array(typed_sequence))\n.....\nFAILED tests/features/test_audio.py::test_dataset_with_audio_feature_map_is_decoded - pyarrow.lib.ArrowInvalid: Could not convert <torchcodec.decoders._audio_decoder.AudioDecoder object at 0x138cdd810> with type AudioDecoder: did not recognize Python value type when inferring an Arrow data type\n```\n\nBy the way I copied the test case and ran it on the original implementation of the Video feature, which uses the torchvision backend and I got a similar error.\n```\ndef test_dataset_with_video_feature_map_is_decoded(shared_datadir):\n video_path = str(shared_datadir / \"test_video_66x50.mov\")\n data = {\"video\": [video_path], \"text\": [\"Hello\"]}\n features = Features({\"video\": Video(), \"text\": Value(\"string\")})\n dset = Dataset.from_dict(data, features=features)\n\n def process_audio_sampling_rate_by_example(example):\n metadata = example[\"video\"].get_metadata()\n example[\"double_fps\"] = 2 * metadata[\"video\"][\"fps\"][0]\n return example\n\n decoded_dset = dset.map(process_audio_sampling_rate_by_example)\n for item in decoded_dset.cast_column(\"video\", Video(decode=False)):\n assert item.keys() == {\"video\", \"text\", \"double_fps\"}\n assert item[\"double_fps\"] == 2 * 10 # prollly wont work past 2*10 is made up!! shouldn't pass\n\n def process_audio_sampling_rate_by_batch(batch):\n double_fps = []\n for video in batch[\"video\"]:\n double_fps.append(2 * video.metadata.begin_stream_seconds)\n batch[\"double_fps\"] = double_fps\n return batch\n\n decoded_dset = dset.map(process_audio_sampling_rate_by_batch, batched=True)\n for item in decoded_dset.cast_column(\"video\", Video(decode=False)):\n assert item.keys() == {\"video\", \"text\", \"double_fps\"}\n assert item[\"double_fps\"] == 2 * 10 # prollly wont work past this no reason it should\n```\n\nI was wondering if these error's are expected. They seem to be coming from the fact that the function `_cast_to_python_objects` in `src/datasets/features/features.py` doesn't handle VideoDecoders or AudioDecoders. I was able to fix it and get rid of the error by adding this to the bottom of the function\n```\n elif config.TORCHCODEC_AVAILABLE and \"torchcodec\" in sys.modules and isinstance(obj, VideoDecoder):\n v = Video()\n return v.encode_example(obj), True\n elif config.TORCHCODEC_AVAILABLE and \"torchcodec\" in sys.modules and isinstance(obj, AudioDecoder):\n a = Audio()\n return a.encode_example(obj), True\n```\nThis fixed it, but I just want to make sure I'm not adding things that are messing up the intended functionality.", "This is the right fix ! :)", "Btw I just remembered that we were using soundfile because it can support a wide range of audio formats, is it also the case for torchcodec ? including ogg, opus for example", "Yes from what I understand torchcodec supports everything ffmpeg supports.", "Okay just finished. However, I wasn't able to pass this test case:\n```python\n@require_torchcodec\n@require_sndfile\[email protected](\"streaming\", [False, True])\ndef test_load_dataset_with_audio_feature(streaming, jsonl_audio_dataset_path, shared_datadir):\n from torchcodec.decoders import AudioDecoder\n audio_path = str(shared_datadir / \"test_audio_44100.wav\")\n data_files = jsonl_audio_dataset_path\n features = Features({\"audio\": Audio(), \"text\": Value(\"string\")})\n dset = load_dataset(\"json\", split=\"train\", data_files=data_files, features=features, streaming=streaming)\n item = dset[0] if not streaming else next(iter(dset))\n assert item.keys() == {\"audio\", \"text\"}\n assert isinstance(item[\"audio\"], AudioDecoder)\n samples = item[\"audio\"].get_all_samples()\n assert samples.sample_rate == 44100\n assert samples.data.shape == (1, 202311)\n```\n\nIt returned this error\n```\nstreaming = False, jsonl_audio_dataset_path = '/private/var/folders/47/c7dlgs_n6lx8rtr8f5w5m1m00000gn/T/pytest-of-tytodd/pytest-103/data2/audio_dataset.jsonl'\nshared_datadir = PosixPath('/private/var/folders/47/c7dlgs_n6lx8rtr8f5w5m1m00000gn/T/pytest-of-tytodd/pytest-103/test_load_dataset_with_audio_f0/data')\n\n @require_torchcodec\n @require_sndfile\n @pytest.mark.parametrize(\"streaming\", [False, True])\n def test_load_dataset_with_audio_feature(streaming, jsonl_audio_dataset_path, shared_datadir):\n from torchcodec.decoders import AudioDecoder\n audio_path = str(shared_datadir / \"test_audio_44100.wav\")\n data_files = jsonl_audio_dataset_path\n features = Features({\"audio\": Audio(), \"text\": Value(\"string\")})\n> dset = load_dataset(\"json\", split=\"train\", data_files=data_files, features=features, streaming=streaming)\n\ntests/features/test_audio.py:686: \n_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _\nsrc/datasets/load.py:1418: in load_dataset\n builder_instance.download_and_prepare(\nsrc/datasets/builder.py:925: in download_and_prepare\n self._download_and_prepare(\nsrc/datasets/builder.py:1019: in _download_and_prepare\n verify_splits(self.info.splits, split_dict)\n_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _\n\nexpected_splits = {'train': SplitInfo(name='train', num_bytes=2351563, num_examples=10000, shard_lengths=None, dataset_name=None), 'validation': SplitInfo(name='validation', num_bytes=238418, num_examples=1000, shard_lengths=None, dataset_name=None)}\nrecorded_splits = {'train': SplitInfo(name='train', num_bytes=167, num_examples=1, shard_lengths=None, dataset_name='json')}\n\n def verify_splits(expected_splits: Optional[dict], recorded_splits: dict):\n if expected_splits is None:\n logger.info(\"Unable to verify splits sizes.\")\n return\n if len(set(expected_splits) - set(recorded_splits)) > 0:\n> raise ExpectedMoreSplitsError(str(set(expected_splits) - set(recorded_splits)))\nE datasets.exceptions.ExpectedMoreSplitsError: {'validation'}\n\nsrc/datasets/utils/info_utils.py:68: ExpectedMoreSplitsError\n```\n\nIt looks like this test case wasn't passing when I forked the repo, so I assume I didn't do anything to break it. I also added this case to `test_video.py`, and it fails there as well. If this looks good, I'll go ahead and submit the PR.", "Awesome ! yes feel free to submit the PR, I can see what I can do for the remaining tests", "@lhoestq just submitted it #7616 " ]
2025-06-11T07:02:30Z
2025-06-19T18:25:49Z
2025-06-19T18:25:49Z
CONTRIBUTOR
null
null
null
null
### Feature request Pytorch is migrating video processing to torchcodec and it's pretty cool. It would be nice to migrate both the audio and video features to use torchcodec instead of torchaudio/video. ### Motivation My use case is I'm working on a multimodal AV model, and what's nice about torchcodec is I can extract the audio tensors directly from MP4 files. Also, I can easily resample video data to whatever fps I like on the fly. I haven't found an easy/efficient way to do this with torchvision. ### Your contribution I’m modifying the Video dataclass to use torchcodec in place of the current backend, starting from a stable commit for a project I’m working on. If it ends up working well, I’m happy to open a PR on main.
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
{ "+1": 1, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/7607/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7607/timeline
null
completed
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7600
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7600/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7600/comments
https://api.github.com/repos/huggingface/datasets/issues/7600/events
https://github.com/huggingface/datasets/issues/7600
3,127,296,182
I_kwDODunzps66ZsC2
7,600
`push_to_hub` is not concurrency safe (dataset schema corruption)
{ "avatar_url": "https://avatars.githubusercontent.com/u/391004?v=4", "events_url": "https://api.github.com/users/sharvil/events{/privacy}", "followers_url": "https://api.github.com/users/sharvil/followers", "following_url": "https://api.github.com/users/sharvil/following{/other_user}", "gists_url": "https://api.github.com/users/sharvil/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/sharvil", "id": 391004, "login": "sharvil", "node_id": "MDQ6VXNlcjM5MTAwNA==", "organizations_url": "https://api.github.com/users/sharvil/orgs", "received_events_url": "https://api.github.com/users/sharvil/received_events", "repos_url": "https://api.github.com/users/sharvil/repos", "site_admin": false, "starred_url": "https://api.github.com/users/sharvil/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sharvil/subscriptions", "type": "User", "url": "https://api.github.com/users/sharvil", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "@lhoestq can you please take a look? I've submitted a PR that fixes this issue. Thanks.", "Thanks for the ping ! As I said in https://github.com/huggingface/datasets/pull/7605 there is maybe a more general approach using retries :)", "Dropping this due to inactivity; we've implemented push_to_hub outside of HF datasets that's concurrency safe. Feel free to use the code I provided as a starting point if there's still interest in addressing this issue.", "Exploring another fix here: https://github.com/huggingface/datasets/issues/7600" ]
2025-06-07T17:28:56Z
2025-07-31T10:00:50Z
2025-07-31T10:00:50Z
NONE
null
null
null
null
### Describe the bug Concurrent processes modifying and pushing a dataset can overwrite each others' dataset card, leaving the dataset unusable. Consider this scenario: - we have an Arrow dataset - there are `N` configs of the dataset - there are `N` independent processes operating on each of the individual configs (e.g. adding a column, `new_col`) - each process calls `push_to_hub` on their particular config when they're done processing - all calls to `push_to_hub` succeed - the `README.md` now has some configs with `new_col` added and some with `new_col` missing Any attempt to load a config (using `load_dataset`) where `new_col` is missing will fail because of a schema mismatch between `README.md` and the Arrow files. Fixing the dataset requires updating `README.md` by hand with the correct schema for the affected config. In effect, `push_to_hub` is doing a `git push --force` (I found this behavior quite surprising). We have hit this issue every time we run processing jobs over our datasets and have to fix corrupted schemas by hand. Reading through the code, it seems that specifying a [`parent_commit`](https://github.com/huggingface/huggingface_hub/blob/v0.32.4/src/huggingface_hub/hf_api.py#L4587) hash around here https://github.com/huggingface/datasets/blob/main/src/datasets/arrow_dataset.py#L5794 would get us to a normal, non-forced git push, and avoid schema corruption. I'm not familiar enough with the code to know how to determine the commit hash from which the in-memory dataset card was loaded. ### Steps to reproduce the bug See above. ### Expected behavior Concurrent edits to disjoint configs of a dataset should never corrupt the dataset schema. ### Environment info - `datasets` version: 2.20.0 - Platform: Linux-5.15.0-118-generic-x86_64-with-glibc2.35 - Python version: 3.10.14 - `huggingface_hub` version: 0.30.2 - PyArrow version: 19.0.1 - Pandas version: 2.2.2 - `fsspec` version: 2023.9.0
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
{ "+1": 5, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 5, "url": "https://api.github.com/repos/huggingface/datasets/issues/7600/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7600/timeline
null
completed
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7599
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7599/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7599/comments
https://api.github.com/repos/huggingface/datasets/issues/7599/events
https://github.com/huggingface/datasets/issues/7599
3,125,620,119
I_kwDODunzps66TS2X
7,599
My already working dataset (when uploaded few months ago) now is ignoring metadata.jsonl
{ "avatar_url": "https://avatars.githubusercontent.com/u/97530443?v=4", "events_url": "https://api.github.com/users/JuanCarlosMartinezSevilla/events{/privacy}", "followers_url": "https://api.github.com/users/JuanCarlosMartinezSevilla/followers", "following_url": "https://api.github.com/users/JuanCarlosMartinezSevilla/following{/other_user}", "gists_url": "https://api.github.com/users/JuanCarlosMartinezSevilla/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/JuanCarlosMartinezSevilla", "id": 97530443, "login": "JuanCarlosMartinezSevilla", "node_id": "U_kgDOBdAySw", "organizations_url": "https://api.github.com/users/JuanCarlosMartinezSevilla/orgs", "received_events_url": "https://api.github.com/users/JuanCarlosMartinezSevilla/received_events", "repos_url": "https://api.github.com/users/JuanCarlosMartinezSevilla/repos", "site_admin": false, "starred_url": "https://api.github.com/users/JuanCarlosMartinezSevilla/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/JuanCarlosMartinezSevilla/subscriptions", "type": "User", "url": "https://api.github.com/users/JuanCarlosMartinezSevilla", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "Maybe its been a recent update, but i can manage to load the metadata.jsonl separately from the images with:\n\n```\nmetadata = load_dataset(\"PRAIG/SMB\", split=\"train\", data_files=[\"*.jsonl\"])\nimages = load_dataset(\"PRAIG/SMB\", split=\"train\")\n```\nDo you know it this is an expected behaviour? This makes my dataset viewer to only load the images without the labeling of metadata.jsonl.\n\nThanks", "Hi ! this is because we now expect the metadata file to be inside the directory named after the split \"train\" (this way each split can have its own metadata and can be loaded independently)\n\nYou can fix that by configuring it explicitly in the dataset's README.md header:\n\n```yaml\nconfigs:\n- config_name: default\n data_files:\n - split: train\n path:\n - \"train/**/*.png\"\n - \"metadata.jsonl\"\n```\n\n(or by moving the metadata.jsonl in train/ but in this case you also have to modify the content of the JSONL to fix the relative paths to the images)", "Thank you very much, dataset viewer is already working as expected!!" ]
2025-06-06T18:59:00Z
2025-06-16T15:18:00Z
2025-06-16T15:18:00Z
NONE
null
null
null
null
### Describe the bug Hi everyone, I uploaded my dataset https://huggingface.co/datasets/PRAIG/SMB a few months ago while I was waiting for a conference acceptance response. Without modifying anything in the dataset repository now the Dataset viewer is not rendering the metadata.jsonl annotations, neither it is being downloaded when using load_dataset. Can you please help? Thank you in advance. ### Steps to reproduce the bug from datasets import load_dataset ds = load_dataset("PRAIG/SMB") ds = ds["train"] ### Expected behavior It is expected to have all the metadata available in the jsonl file. Fields like: "score_id", "original_width", "original_height", "regions"... among others. ### Environment info datasets==3.6.0, python 3.13.3 (but he problem is already in the huggingface dataset page)
{ "avatar_url": "https://avatars.githubusercontent.com/u/97530443?v=4", "events_url": "https://api.github.com/users/JuanCarlosMartinezSevilla/events{/privacy}", "followers_url": "https://api.github.com/users/JuanCarlosMartinezSevilla/followers", "following_url": "https://api.github.com/users/JuanCarlosMartinezSevilla/following{/other_user}", "gists_url": "https://api.github.com/users/JuanCarlosMartinezSevilla/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/JuanCarlosMartinezSevilla", "id": 97530443, "login": "JuanCarlosMartinezSevilla", "node_id": "U_kgDOBdAySw", "organizations_url": "https://api.github.com/users/JuanCarlosMartinezSevilla/orgs", "received_events_url": "https://api.github.com/users/JuanCarlosMartinezSevilla/received_events", "repos_url": "https://api.github.com/users/JuanCarlosMartinezSevilla/repos", "site_admin": false, "starred_url": "https://api.github.com/users/JuanCarlosMartinezSevilla/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/JuanCarlosMartinezSevilla/subscriptions", "type": "User", "url": "https://api.github.com/users/JuanCarlosMartinezSevilla", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7599/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7599/timeline
null
completed
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7597
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7597/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7597/comments
https://api.github.com/repos/huggingface/datasets/issues/7597/events
https://github.com/huggingface/datasets/issues/7597
3,123,962,709
I_kwDODunzps66M-NV
7,597
Download datasets from a private hub in 2025
{ "avatar_url": "https://avatars.githubusercontent.com/u/178552926?v=4", "events_url": "https://api.github.com/users/DanielSchuhmacher/events{/privacy}", "followers_url": "https://api.github.com/users/DanielSchuhmacher/followers", "following_url": "https://api.github.com/users/DanielSchuhmacher/following{/other_user}", "gists_url": "https://api.github.com/users/DanielSchuhmacher/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/DanielSchuhmacher", "id": 178552926, "login": "DanielSchuhmacher", "node_id": "U_kgDOCqSAXg", "organizations_url": "https://api.github.com/users/DanielSchuhmacher/orgs", "received_events_url": "https://api.github.com/users/DanielSchuhmacher/received_events", "repos_url": "https://api.github.com/users/DanielSchuhmacher/repos", "site_admin": false, "starred_url": "https://api.github.com/users/DanielSchuhmacher/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/DanielSchuhmacher/subscriptions", "type": "User", "url": "https://api.github.com/users/DanielSchuhmacher", "user_view_type": "public" }
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
closed
false
null
[]
null
[ "Hi ! First, and in the general case, Hugging Face does offer to host private datasets, and with a subscription you can even choose the region in which the repositories are hosted (US, EU)\n\nThen if you happen to have a private deployment, you can set the HF_ENDPOINT environment variable (same as in https://github.com/huggingface/transformers/issues/38634)", "Thank you @lhoestq. Works as described!" ]
2025-06-06T07:55:19Z
2025-06-13T13:46:00Z
2025-06-13T13:46:00Z
NONE
null
null
null
null
### Feature request In the context of a private hub deployment, customers would like to use load_dataset() to load datasets from their hub, not from the public hub. This doesn't seem to be configurable at the moment and it would be nice to add this feature. The obvious workaround is to clone the repo first and then load it from local storage, but this adds an extra step. It'd be great to have the same experience regardless of where the hub is hosted. This issue was raised before here: https://github.com/huggingface/datasets/issues/3679 @juliensimon ### Motivation none ### Your contribution none
{ "avatar_url": "https://avatars.githubusercontent.com/u/178552926?v=4", "events_url": "https://api.github.com/users/DanielSchuhmacher/events{/privacy}", "followers_url": "https://api.github.com/users/DanielSchuhmacher/followers", "following_url": "https://api.github.com/users/DanielSchuhmacher/following{/other_user}", "gists_url": "https://api.github.com/users/DanielSchuhmacher/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/DanielSchuhmacher", "id": 178552926, "login": "DanielSchuhmacher", "node_id": "U_kgDOCqSAXg", "organizations_url": "https://api.github.com/users/DanielSchuhmacher/orgs", "received_events_url": "https://api.github.com/users/DanielSchuhmacher/received_events", "repos_url": "https://api.github.com/users/DanielSchuhmacher/repos", "site_admin": false, "starred_url": "https://api.github.com/users/DanielSchuhmacher/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/DanielSchuhmacher/subscriptions", "type": "User", "url": "https://api.github.com/users/DanielSchuhmacher", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7597/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7597/timeline
null
completed
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7594
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7594/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7594/comments
https://api.github.com/repos/huggingface/datasets/issues/7594/events
https://github.com/huggingface/datasets/issues/7594
3,120,799,626
I_kwDODunzps66A5-K
7,594
Add option to ignore keys/columns when loading a dataset from jsonl(or any other data format)
{ "avatar_url": "https://avatars.githubusercontent.com/u/36810152?v=4", "events_url": "https://api.github.com/users/avishaiElmakies/events{/privacy}", "followers_url": "https://api.github.com/users/avishaiElmakies/followers", "following_url": "https://api.github.com/users/avishaiElmakies/following{/other_user}", "gists_url": "https://api.github.com/users/avishaiElmakies/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/avishaiElmakies", "id": 36810152, "login": "avishaiElmakies", "node_id": "MDQ6VXNlcjM2ODEwMTUy", "organizations_url": "https://api.github.com/users/avishaiElmakies/orgs", "received_events_url": "https://api.github.com/users/avishaiElmakies/received_events", "repos_url": "https://api.github.com/users/avishaiElmakies/repos", "site_admin": false, "starred_url": "https://api.github.com/users/avishaiElmakies/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/avishaiElmakies/subscriptions", "type": "User", "url": "https://api.github.com/users/avishaiElmakies", "user_view_type": "public" }
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
open
false
null
[]
null
[ "Good point, I'd be in favor of having the `columns` argument in `JsonConfig` (and the others) to align with `ParquetConfig` to let users choose which columns to load and ignore the rest", "Is it possible to ignore columns when using parquet? ", "Yes, you can pass `columns=...` to load_dataset to select which columns to load, and it is passed to `ParquetConfig` :)", "Ok, i didn't know that. \nAnyway, it would be good to add this to others", "Hi @lhoestq \n\nI'd like to take this up!\n\nAs you suggested, I’ll extend the support for the columns parameter (currently used in ParquetConfig) to JsonConfig as well. This will allow users to selectively load specific keys/columns from .jsonl (or .json) files and ignore the rest — solving the type inconsistency issues in unclean datasets.", "Hi @avishaiElmakies and @lhoestq \n\nJust wanted to let you know that this is now implemented in #7594\nAs suggested, support for the `columns=...` argument (previously available for Parquet) has now been extended to **JSON and JSONL** loading via `load_dataset(...)`. You can now load only specific keys/columns and skip the rest — which should help in cases where some fields are unclean, inconsistent, or just unnecessary.\n\n### ✅ Example:\n\n```python\nfrom datasets import load_dataset\n\ndataset = load_dataset(\"json\", data_files=\"your_data.jsonl\", columns=[\"id\", \"title\"])\nprint(dataset[\"train\"].column_names)\n# Output: ['id', 'title']\n```\n\n### 🔧 Summary of changes:\n\n* Added `columns: Optional[List[str]]` to `JsonConfig`\n* Updated `_generate_tables()` to filter selected columns\n* Forwarded `columns` argument from `load_dataset()` to the config\n* Added test case to validate behavior\n\nLet me know if you'd like the same to be added for CSV or others as a follow-up — happy to help.", "@ArjunJagdale this looks great! Thanks!\nI believe that every format that is supported by `datasets` should probably have this feature since it is very useful and will streamline the api (people will know that they can just use `columns` to select the columns they want, and it will not be dependent on the data format) ", "Thanks @avishaiElmakies — totally agree, making `columns=...` support consistent across all formats would be really helpful for users." ]
2025-06-05T11:12:45Z
2025-06-28T09:03:00Z
null
NONE
null
null
null
null
### Feature request Hi, I would like the option to ignore keys/columns when loading a dataset from files (e.g. jsonl). ### Motivation I am working on a dataset which is built on jsonl. It seems the dataset is unclean and a column has different types in each row. I can't clean this or remove the column (It is not my data and it is too big for me to clean and save on my own hardware). I would like the option to just ignore this column when using `load_dataset`, since i don't need it. I tried to look if this is already possible but couldn't find a solution. if there is I would love some help. If it is not currently possible, I would love this feature ### Your contribution I don't think I can help this time, unfortunately.
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7594/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7594/timeline
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7591
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7591/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7591/comments
https://api.github.com/repos/huggingface/datasets/issues/7591/events
https://github.com/huggingface/datasets/issues/7591
3,117,816,388
I_kwDODunzps651hpE
7,591
Add num_proc parameter to push_to_hub
{ "avatar_url": "https://avatars.githubusercontent.com/u/46050679?v=4", "events_url": "https://api.github.com/users/SwayStar123/events{/privacy}", "followers_url": "https://api.github.com/users/SwayStar123/followers", "following_url": "https://api.github.com/users/SwayStar123/following{/other_user}", "gists_url": "https://api.github.com/users/SwayStar123/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/SwayStar123", "id": 46050679, "login": "SwayStar123", "node_id": "MDQ6VXNlcjQ2MDUwNjc5", "organizations_url": "https://api.github.com/users/SwayStar123/orgs", "received_events_url": "https://api.github.com/users/SwayStar123/received_events", "repos_url": "https://api.github.com/users/SwayStar123/repos", "site_admin": false, "starred_url": "https://api.github.com/users/SwayStar123/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/SwayStar123/subscriptions", "type": "User", "url": "https://api.github.com/users/SwayStar123", "user_view_type": "public" }
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
closed
false
null
[]
null
[ "Hi @SwayStar123 \n\nI'd be interested in taking this up. I plan to add a `num_proc` parameter to `push_to_hub()` and use parallel uploads for shards using `concurrent.futures`. Will explore whether `ThreadPoolExecutor` or `ProcessPoolExecutor` is more suitable based on current implementation. Let me know if that sounds good!\n", "Just a quick update — `push_to_hub()` already had the `num_proc` argument in its signature and was correctly passing it internally to `_push_parquet_shards_to_hub()`.\n\nThe actual change required was inside `_push_parquet_shards_to_hub()` to enable parallel shard uploads using `multiprocessing` when `num_proc > 1`.\n\n@lhoestq @SwayStar123 ", "> Hi @SwayStar123 \n> \n> I'd be interested in taking this up. I plan to add a `num_proc` parameter to `push_to_hub()` and use parallel uploads for shards using `concurrent.futures`. Will explore whether `ThreadPoolExecutor` or `ProcessPoolExecutor` is more suitable based on current implementation. Let me know if that sounds good!\n> \n\nHey thanks for working on it. But I'm not a hf dev so I don't know the best way to do it.", "done in https://github.com/huggingface/datasets/pull/7606" ]
2025-06-04T13:19:15Z
2025-09-04T10:43:33Z
2025-09-04T10:43:33Z
NONE
null
null
null
null
### Feature request A number of processes parameter to the dataset.push_to_hub method ### Motivation Shards are currently uploaded serially which makes it slow for many shards, uploading can be done in parallel and much faster
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
{ "+1": 2, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 2, "url": "https://api.github.com/repos/huggingface/datasets/issues/7591/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7591/timeline
null
completed
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7590
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7590/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7590/comments
https://api.github.com/repos/huggingface/datasets/issues/7590/events
https://github.com/huggingface/datasets/issues/7590
3,101,654,892
I_kwDODunzps64339s
7,590
`Sequence(Features(...))` causes PyArrow cast error in `load_dataset` despite correct schema.
{ "avatar_url": "https://avatars.githubusercontent.com/u/183279820?v=4", "events_url": "https://api.github.com/users/AHS-uni/events{/privacy}", "followers_url": "https://api.github.com/users/AHS-uni/followers", "following_url": "https://api.github.com/users/AHS-uni/following{/other_user}", "gists_url": "https://api.github.com/users/AHS-uni/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/AHS-uni", "id": 183279820, "login": "AHS-uni", "node_id": "U_kgDOCuygzA", "organizations_url": "https://api.github.com/users/AHS-uni/orgs", "received_events_url": "https://api.github.com/users/AHS-uni/received_events", "repos_url": "https://api.github.com/users/AHS-uni/repos", "site_admin": false, "starred_url": "https://api.github.com/users/AHS-uni/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/AHS-uni/subscriptions", "type": "User", "url": "https://api.github.com/users/AHS-uni", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "Hi @lhoestq \n\nCould you help confirm whether this qualifies as a bug?\n\nIt looks like the issue stems from how `Sequence(Features(...))` is interpreted as a plain struct during schema inference, which leads to a mismatch when casting with PyArrow (especially with nested structs inside lists). From the description, this seems like an inconsistency with expected behavior.\n\nIf confirmed, I’d be happy to take a shot at investigating and potentially submitting a fix.\n\nAlso looping in @AHS-uni — could you kindly share a minimal JSONL example that reproduces this?\n\nThanks!", "Hello @Flink-ddd \n\nI updated the minimal example and included both JSON and JSONL minimal examples in the Colab notebook. \n\nHere is the minimal JSON file for convenience (can't upload JSONL files).\n\n[mini.json](https://github.com/user-attachments/files/20535145/mini.json)\n\nI've also found a number of issues which describe a similar problem:\n\n[7569](https://github.com/huggingface/datasets/issues/7569) (Open)\n[7137](https://github.com/huggingface/datasets/issues/7137) (Open)\n[7501](https://github.com/huggingface/datasets/issues/7501) (Closed)\n[2434](https://github.com/huggingface/datasets/issues/2434) (Closed)\n\nThe closed issues don't really address the problem (IMO). [7501](https://github.com/huggingface/datasets/issues/7501) provides a workaround (using a Python list instead of `Sequence`), but it seem precarious. ", "Hi ! `Sequence({...})` corresponds to a struct of lists ([docs](https://huggingface.co/docs/datasets/v3.6.0/en/package_reference/main_classes#datasets.Features)). This come from Tensorflow Datasets.\n\nIf you want to use a list of structs, you should use `[{...}]`, e.g.\n\n```python\nitem = {\n \"id\": Value(\"string\"),\n \"data\": Value(\"string\"),\n}\n\nfeatures = Features({\n \"list\": [item],\n})\n```", "@lhoestq Thanks for your explanation, which helps me understand the logic behind. But I'm confused how to define that in `README.md`?\n\nMy jsonl data is: \n```\n{\"answers\": [{\"text\": \"text1\", \"label\": \"label1\"}, {\"text\": \"text2\", \"label\": \"label2\"},]}\n{\"answers\": [{\"text\": \"text1\", \"label\": \"label1\"}, {\"text\": \"text2\", \"label\": \"label2\"},]}\n...\n```\n\nMy README.md look like\n```\ndataset_info:\n- config_name: default\n features:\n - name: answers\n sequence:\n - name: text\n dtype: string\n - name: label\n dtype: string\n```\nI understand `sequence` here is not correct, but what's the correct format? I tried following (`sequence -> dtype`)and seems not the case:\n```\ndataset_info:\n- config_name: default\n features:\n - name: answers\n dtype:\n - name: text\n sequence: string\n - name: label\n sequence: string\n```", "The `List` type which doesn't have the weird dict behavior of `Sequence` has been added for `datasets` 4.0 (to be released next week). Feel free to install `datasets` from source to try it out :)\nEDIT: it's out !\n\nYou can fix the issue using `List` instead of `Sequence`, e.g. in the case of the original post:\n\n```python\n# Feature spec with List of structs\nitem = {\n \"id\": Value(\"string\"),\n \"data\": Value(\"string\"),\n}\n\nfeatures = Features({\n \"list\": List(item),\n})\n```\n\nfor which the README.md is\n\n```yaml\ndataset_info:\n- config_name: default\n features:\n - name: list\n list:\n - name: id\n dtype: string\n - name: data\n dtype: string\n```", "@lhoestq Thanks! I didn't realize there is a `list` keyword I could use. I thought I had to use `dtype` or something. Hope there could be better documentation on the `README.md` formats. I've closed my issue #7137 " ]
2025-05-29T22:53:36Z
2025-07-19T22:45:08Z
2025-07-19T22:45:08Z
NONE
null
null
null
null
### Description When loading a dataset with a field declared as a list of structs using `Sequence(Features(...))`, `load_dataset` incorrectly infers the field as a plain `struct<...>` instead of a `list<struct<...>>`. This leads to the following error: ``` ArrowNotImplementedError: Unsupported cast from list<item: struct<id: string, data: string>> to struct using function cast_struct ``` This occurs even when the `features` schema is explicitly provided and the dataset format supports nested structures natively (e.g., JSON, JSONL). --- ### Minimal Reproduction [Colab Link.](https://colab.research.google.com/drive/1FZPQy6TP3jVd4B3mYKyfQaWNuOAvljUq?usp=sharing) #### Dataset ```python data = [ { "list": [ {"id": "example1", "data": "text"}, ] }, ] ``` #### Schema ```python from datasets import Features, Sequence, Value item = Features({ "id": Value("string"), "data": Value("string"), }) features = Features({ "list": Sequence(item), }) ``` --- ### Tested File Formats The same schema was tested across different formats: | Format | Method | Result | | --------- | --------------------------- | ------------------- | | JSONL | `load_dataset("json", ...)` | Arrow cast error | | JSON | `load_dataset("json", ...)` | Arrow cast error | | In-memory | `Dataset.from_list(...)` | Works as expected | The issue seems not to be in the schema or the data, but in how `load_dataset()` handles the `Sequence(Features(...))` pattern when parsing from files (specifically JSON and JSONL). --- ### Expected Behavior If `features` is explicitly defined as: ```python Features({"list": Sequence(Features({...}))}) ``` Then the data should load correctly across all backends — including from JSON and JSONL — without any Arrow casting errors. This works correctly when loading from memory via `Dataset.from_list`. --- ### Environment * `datasets`: 3.6.0 * `pyarrow`: 20.0.0 * Python: 3.12.10 * OS: Ubuntu 24.04.2 LTS * Notebook: \[Colab test notebook available] ---
{ "avatar_url": "https://avatars.githubusercontent.com/u/183279820?v=4", "events_url": "https://api.github.com/users/AHS-uni/events{/privacy}", "followers_url": "https://api.github.com/users/AHS-uni/followers", "following_url": "https://api.github.com/users/AHS-uni/following{/other_user}", "gists_url": "https://api.github.com/users/AHS-uni/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/AHS-uni", "id": 183279820, "login": "AHS-uni", "node_id": "U_kgDOCuygzA", "organizations_url": "https://api.github.com/users/AHS-uni/orgs", "received_events_url": "https://api.github.com/users/AHS-uni/received_events", "repos_url": "https://api.github.com/users/AHS-uni/repos", "site_admin": false, "starred_url": "https://api.github.com/users/AHS-uni/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/AHS-uni/subscriptions", "type": "User", "url": "https://api.github.com/users/AHS-uni", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7590/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7590/timeline
null
completed
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7588
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7588/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7588/comments
https://api.github.com/repos/huggingface/datasets/issues/7588/events
https://github.com/huggingface/datasets/issues/7588
3,094,012,025
I_kwDODunzps64auB5
7,588
ValueError: Invalid pattern: '**' can only be an entire path component [Colab]
{ "avatar_url": "https://avatars.githubusercontent.com/u/43061081?v=4", "events_url": "https://api.github.com/users/wkambale/events{/privacy}", "followers_url": "https://api.github.com/users/wkambale/followers", "following_url": "https://api.github.com/users/wkambale/following{/other_user}", "gists_url": "https://api.github.com/users/wkambale/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/wkambale", "id": 43061081, "login": "wkambale", "node_id": "MDQ6VXNlcjQzMDYxMDgx", "organizations_url": "https://api.github.com/users/wkambale/orgs", "received_events_url": "https://api.github.com/users/wkambale/received_events", "repos_url": "https://api.github.com/users/wkambale/repos", "site_admin": false, "starred_url": "https://api.github.com/users/wkambale/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/wkambale/subscriptions", "type": "User", "url": "https://api.github.com/users/wkambale", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "Could you please run the following code snippet in your environment and share the exact output? This will help check for any compatibility issues within the env itself. \n\n```\nimport datasets\nimport huggingface_hub\nimport fsspec\n\nprint(\"datasets version:\", datasets.__version__)\nprint(\"huggingface_hub version:\", huggingface_hub.__version__)\nprint(\"fsspec version:\", fsspec.__version__)\n```", "```bash\ndatasets version: 2.14.4\nhuggingface_hub version: 0.31.4\nfsspec version: 2025.3.2\n```", "Version 2.14.4 is not the latest version available, in fact it is from August 08, 2023 (you can check here: https://pypi.org/project/datasets/#history)\n\nUse pip install datasets==3.6.0 to install a more recent version (from May 7, 2025)\n\nI also had the same problem with Colab, after updating to the latest version it was solved.\n\nI hope it helps", "thank you @CleitonOERocha. it sure did help.\n\nupdating `datasets` to v3.6.0 and keeping `fsspec` on v2025.3.2 eliminates the issue.", "Very helpful, thank you!" ]
2025-05-27T13:46:05Z
2025-05-30T13:22:52Z
2025-05-30T01:26:30Z
NONE
null
null
null
null
### Describe the bug I have a dataset on HF [here](https://huggingface.co/datasets/kambale/luganda-english-parallel-corpus) that i've previously used to train a translation model [here](https://huggingface.co/kambale/pearl-11m-translate). now i changed a few hyperparameters to increase number of tokens for the model, increase Transformer layers, and all however, when i try to load the dataset, this error keeps coming up.. i have tried everything.. i have re-written the code a hundred times, and this keep coming up ### Steps to reproduce the bug Imports: ```bash !pip install datasets huggingface_hub fsspec ``` Python code: ```python from datasets import load_dataset HF_DATASET_NAME = "kambale/luganda-english-parallel-corpus" # Load the dataset try: if not HF_DATASET_NAME or HF_DATASET_NAME == "YOUR_HF_DATASET_NAME": raise ValueError( "Please provide a valid Hugging Face dataset name." ) dataset = load_dataset(HF_DATASET_NAME) # Omitted code as the error happens on the line above except ValueError as ve: print(f"Configuration Error: {ve}") raise except Exception as e: print(f"An error occurred while loading the dataset '{HF_DATASET_NAME}': {e}") raise e ``` now, i have tried going through this [issue](https://github.com/huggingface/datasets/issues/6737) and nothing helps ### Expected behavior loading the dataset successfully and perform splits (train, test, validation) ### Environment info from the imports, i do not install specific versions of these libraries, so the latest or available version is installed * `datasets` version: latest * `Platform`: Google Colab * `Hardware`: NVIDIA A100 GPU * `Python` version: latest * `huggingface_hub` version: latest * `fsspec` version: latest
{ "avatar_url": "https://avatars.githubusercontent.com/u/43061081?v=4", "events_url": "https://api.github.com/users/wkambale/events{/privacy}", "followers_url": "https://api.github.com/users/wkambale/followers", "following_url": "https://api.github.com/users/wkambale/following{/other_user}", "gists_url": "https://api.github.com/users/wkambale/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/wkambale", "id": 43061081, "login": "wkambale", "node_id": "MDQ6VXNlcjQzMDYxMDgx", "organizations_url": "https://api.github.com/users/wkambale/orgs", "received_events_url": "https://api.github.com/users/wkambale/received_events", "repos_url": "https://api.github.com/users/wkambale/repos", "site_admin": false, "starred_url": "https://api.github.com/users/wkambale/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/wkambale/subscriptions", "type": "User", "url": "https://api.github.com/users/wkambale", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7588/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7588/timeline
null
completed
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7586
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7586/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7586/comments
https://api.github.com/repos/huggingface/datasets/issues/7586/events
https://github.com/huggingface/datasets/issues/7586
3,091,320,431
I_kwDODunzps64Qc5v
7,586
help is appreciated
{ "avatar_url": "https://avatars.githubusercontent.com/u/54931785?v=4", "events_url": "https://api.github.com/users/rajasekarnp1/events{/privacy}", "followers_url": "https://api.github.com/users/rajasekarnp1/followers", "following_url": "https://api.github.com/users/rajasekarnp1/following{/other_user}", "gists_url": "https://api.github.com/users/rajasekarnp1/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/rajasekarnp1", "id": 54931785, "login": "rajasekarnp1", "node_id": "MDQ6VXNlcjU0OTMxNzg1", "organizations_url": "https://api.github.com/users/rajasekarnp1/orgs", "received_events_url": "https://api.github.com/users/rajasekarnp1/received_events", "repos_url": "https://api.github.com/users/rajasekarnp1/repos", "site_admin": false, "starred_url": "https://api.github.com/users/rajasekarnp1/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/rajasekarnp1/subscriptions", "type": "User", "url": "https://api.github.com/users/rajasekarnp1", "user_view_type": "public" }
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
open
false
null
[]
null
[ "how is this related to this repository ?" ]
2025-05-26T14:00:42Z
2025-05-26T18:21:57Z
null
NONE
null
null
null
null
### Feature request https://github.com/rajasekarnp1/neural-audio-upscaler/tree/main ### Motivation ai model develpment and audio ### Your contribution ai model develpment and audio
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7586/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7586/timeline
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7584
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7584/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7584/comments
https://api.github.com/repos/huggingface/datasets/issues/7584/events
https://github.com/huggingface/datasets/issues/7584
3,090,255,023
I_kwDODunzps64MYyv
7,584
Add LMDB format support
{ "avatar_url": "https://avatars.githubusercontent.com/u/30512160?v=4", "events_url": "https://api.github.com/users/trotsky1997/events{/privacy}", "followers_url": "https://api.github.com/users/trotsky1997/followers", "following_url": "https://api.github.com/users/trotsky1997/following{/other_user}", "gists_url": "https://api.github.com/users/trotsky1997/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/trotsky1997", "id": 30512160, "login": "trotsky1997", "node_id": "MDQ6VXNlcjMwNTEyMTYw", "organizations_url": "https://api.github.com/users/trotsky1997/orgs", "received_events_url": "https://api.github.com/users/trotsky1997/received_events", "repos_url": "https://api.github.com/users/trotsky1997/repos", "site_admin": false, "starred_url": "https://api.github.com/users/trotsky1997/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/trotsky1997/subscriptions", "type": "User", "url": "https://api.github.com/users/trotsky1997", "user_view_type": "public" }
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
open
false
null
[]
null
[ "Hi ! Can you explain what's your use case ? Is it about converting LMDB to Dataset objects (i.e. converting to Arrow) ?" ]
2025-05-26T07:10:13Z
2025-05-26T18:23:37Z
null
NONE
null
null
null
null
### Feature request Add LMDB format support for large memory-mapping files ### Motivation Add LMDB format support for large memory-mapping files ### Your contribution I'm trying to add it
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7584/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7584/timeline
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7583
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7583/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7583/comments
https://api.github.com/repos/huggingface/datasets/issues/7583/events
https://github.com/huggingface/datasets/issues/7583
3,088,987,757
I_kwDODunzps64HjZt
7,583
load_dataset type stubs reject List[str] for split parameter, but runtime supports it
{ "avatar_url": "https://avatars.githubusercontent.com/u/25069969?v=4", "events_url": "https://api.github.com/users/hierr/events{/privacy}", "followers_url": "https://api.github.com/users/hierr/followers", "following_url": "https://api.github.com/users/hierr/following{/other_user}", "gists_url": "https://api.github.com/users/hierr/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/hierr", "id": 25069969, "login": "hierr", "node_id": "MDQ6VXNlcjI1MDY5OTY5", "organizations_url": "https://api.github.com/users/hierr/orgs", "received_events_url": "https://api.github.com/users/hierr/received_events", "repos_url": "https://api.github.com/users/hierr/repos", "site_admin": false, "starred_url": "https://api.github.com/users/hierr/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/hierr/subscriptions", "type": "User", "url": "https://api.github.com/users/hierr", "user_view_type": "public" }
[]
closed
false
null
[]
null
[]
2025-05-25T02:33:18Z
2025-05-26T18:29:58Z
2025-05-26T18:29:58Z
NONE
null
null
null
null
### Describe the bug The [load_dataset](https://huggingface.co/docs/datasets/v3.6.0/en/package_reference/loading_methods#datasets.load_dataset) method accepts a `List[str]` as the split parameter at runtime, however, the current type stubs restrict the split parameter to `Union[str, Split, None]`. This causes type checkers like Pylance to raise `reportArgumentType` errors when passing a list of strings, even though it works as intended at runtime. ### Steps to reproduce the bug 1. Use load_dataset with multiple splits e.g.: ``` from datasets import load_dataset ds_train, ds_val, ds_test = load_dataset( "Silly-Machine/TuPyE-Dataset", "binary", split=["train[:75%]", "train[75%:]", "test"] ) ``` 2. Observe that code executes correctly at runtime and Pylance raises `Argument of type "List[str]" cannot be assigned to parameter "split" of type "str | Split | None"` ### Expected behavior The type stubs for [load_dataset](https://huggingface.co/docs/datasets/v3.6.0/en/package_reference/loading_methods#datasets.load_dataset) should accept `Union[str, Split, List[str], None]` or more specific overloads for the split parameter to correctly represent runtime behavior. ### Environment info - `datasets` version: 3.6.0 - Platform: Linux-5.15.167.4-microsoft-standard-WSL2-x86_64-with-glibc2.39 - Python version: 3.12.7 - `huggingface_hub` version: 0.32.0 - PyArrow version: 20.0.0 - Pandas version: 2.2.3 - `fsspec` version: 2025.3.0
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7583/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7583/timeline
null
completed
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7580
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7580/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7580/comments
https://api.github.com/repos/huggingface/datasets/issues/7580/events
https://github.com/huggingface/datasets/issues/7580
3,082,993,027
I_kwDODunzps63wr2D
7,580
Requesting a specific split (eg: test) still downloads all (train, test, val) data when streaming=False.
{ "avatar_url": "https://avatars.githubusercontent.com/u/48768216?v=4", "events_url": "https://api.github.com/users/s3pi/events{/privacy}", "followers_url": "https://api.github.com/users/s3pi/followers", "following_url": "https://api.github.com/users/s3pi/following{/other_user}", "gists_url": "https://api.github.com/users/s3pi/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/s3pi", "id": 48768216, "login": "s3pi", "node_id": "MDQ6VXNlcjQ4NzY4MjE2", "organizations_url": "https://api.github.com/users/s3pi/orgs", "received_events_url": "https://api.github.com/users/s3pi/received_events", "repos_url": "https://api.github.com/users/s3pi/repos", "site_admin": false, "starred_url": "https://api.github.com/users/s3pi/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/s3pi/subscriptions", "type": "User", "url": "https://api.github.com/users/s3pi", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "Hi ! There was a PR open to improve this: https://github.com/huggingface/datasets/pull/6832 \nbut it hasn't been continued so far.\n\nIt would be a cool improvement though !" ]
2025-05-22T11:08:16Z
2025-05-26T18:40:31Z
null
NONE
null
null
null
null
### Describe the bug When using load_dataset() from the datasets library (in load.py), specifying a particular split (e.g., split="train") still results in downloading data for all splits when streaming=False. This happens during the builder_instance.download_and_prepare() call. This behavior leads to unnecessary bandwidth usage and longer download times, especially for large datasets, even if the user only intends to use a single split. ### Steps to reproduce the bug dataset_name = "skbose/indian-english-nptel-v0" dataset = load_dataset(dataset_name, token=hf_token, split="test") ### Expected behavior Optimize the download logic so that only the required split is downloaded when streaming=False when a specific split is provided. ### Environment info Dataset: skbose/indian-english-nptel-v0 Platform: M1 Apple Silicon Python verison: 3.12.9 datasets>=3.5.0
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7580/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7580/timeline
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7577
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7577/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7577/comments
https://api.github.com/repos/huggingface/datasets/issues/7577/events
https://github.com/huggingface/datasets/issues/7577
3,080,833,740
I_kwDODunzps63ocrM
7,577
arrow_schema is not compatible with list
{ "avatar_url": "https://avatars.githubusercontent.com/u/164412025?v=4", "events_url": "https://api.github.com/users/jonathanshen-upwork/events{/privacy}", "followers_url": "https://api.github.com/users/jonathanshen-upwork/followers", "following_url": "https://api.github.com/users/jonathanshen-upwork/following{/other_user}", "gists_url": "https://api.github.com/users/jonathanshen-upwork/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/jonathanshen-upwork", "id": 164412025, "login": "jonathanshen-upwork", "node_id": "U_kgDOCcy6eQ", "organizations_url": "https://api.github.com/users/jonathanshen-upwork/orgs", "received_events_url": "https://api.github.com/users/jonathanshen-upwork/received_events", "repos_url": "https://api.github.com/users/jonathanshen-upwork/repos", "site_admin": false, "starred_url": "https://api.github.com/users/jonathanshen-upwork/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/jonathanshen-upwork/subscriptions", "type": "User", "url": "https://api.github.com/users/jonathanshen-upwork", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "Thanks for reporting, I'll look into it", "Actually it looks like you just forgot parenthesis:\n\n```diff\n- f = datasets.Features({'x': list[datasets.Value(dtype='int32')]})\n+ f = datasets.Features({'x': list([datasets.Value(dtype='int32')])})\n```\n\nor simply using the `[ ]` syntax:\n\n```python\nf = datasets.Features({'x':[datasets.Value(dtype='int32')]})\n```\n\nI'm closing this issue if you don't mind", "Ah is that what the syntax is? I don't think I was able to find an actual example of it so I assumed it was in the same way that you specify types eg. `list[int]`. This is good to know, thanks." ]
2025-05-21T16:37:01Z
2025-05-26T18:49:51Z
2025-05-26T18:32:55Z
NONE
null
null
null
null
### Describe the bug ``` import datasets f = datasets.Features({'x': list[datasets.Value(dtype='int32')]}) f.arrow_schema Traceback (most recent call last): File "datasets/features/features.py", line 1826, in arrow_schema return pa.schema(self.type).with_metadata({"huggingface": json.dumps(hf_metadata)}) ^^^^^^^^^ File "datasets/features/features.py", line 1815, in type return get_nested_type(self) ^^^^^^^^^^^^^^^^^^^^^ File "datasets/features/features.py", line 1252, in get_nested_type return pa.struct( ^^^^^^^^^^ File "pyarrow/types.pxi", line 5406, in pyarrow.lib.struct File "pyarrow/types.pxi", line 3890, in pyarrow.lib.field File "pyarrow/types.pxi", line 5918, in pyarrow.lib.ensure_type TypeError: DataType expected, got <class 'list'> ``` The following works ``` f = datasets.Features({'x': datasets.LargeList(datasets.Value(dtype='int32'))}) ``` ### Expected behavior according to https://github.com/huggingface/datasets/blob/458f45a22c3cc9aea5f442f6f519333dcfeae9b9/src/datasets/features/features.py#L1765 python list should be a valid type specification for features ### Environment info - `datasets` version: 3.5.1 - Platform: macOS-15.5-arm64-arm-64bit - Python version: 3.12.9 - `huggingface_hub` version: 0.30.2 - PyArrow version: 19.0.1 - Pandas version: 2.2.3 - `fsspec` version: 2024.12.0
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
{ "+1": 1, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/7577/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7577/timeline
null
completed
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7574
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7574/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7574/comments
https://api.github.com/repos/huggingface/datasets/issues/7574/events
https://github.com/huggingface/datasets/issues/7574
3,079,641,072
I_kwDODunzps63j5fw
7,574
Missing multilingual directions in IWSLT2017 dataset's processing script
{ "avatar_url": "https://avatars.githubusercontent.com/u/79297451?v=4", "events_url": "https://api.github.com/users/andy-joy-25/events{/privacy}", "followers_url": "https://api.github.com/users/andy-joy-25/followers", "following_url": "https://api.github.com/users/andy-joy-25/following{/other_user}", "gists_url": "https://api.github.com/users/andy-joy-25/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/andy-joy-25", "id": 79297451, "login": "andy-joy-25", "node_id": "MDQ6VXNlcjc5Mjk3NDUx", "organizations_url": "https://api.github.com/users/andy-joy-25/orgs", "received_events_url": "https://api.github.com/users/andy-joy-25/received_events", "repos_url": "https://api.github.com/users/andy-joy-25/repos", "site_admin": false, "starred_url": "https://api.github.com/users/andy-joy-25/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/andy-joy-25/subscriptions", "type": "User", "url": "https://api.github.com/users/andy-joy-25", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "I have opened 2 PRs on the Hub: `https://huggingface.co/datasets/IWSLT/iwslt2017/discussions/7` and `https://huggingface.co/datasets/IWSLT/iwslt2017/discussions/8` to resolve this issue", "cool ! I pinged the owners of the dataset on HF to merge your PRs :)" ]
2025-05-21T09:53:17Z
2025-05-26T18:36:38Z
null
NONE
null
null
null
null
### Describe the bug Hi, Upon using `iwslt2017.py` in `IWSLT/iwslt2017` on the Hub for loading the datasets, I am unable to obtain the datasets for the language pairs `de-it`, `de-ro`, `de-nl`, `it-de`, `nl-de`, and `ro-de` using it. These 6 pairs do not show up when using `get_dataset_config_names()` to obtain the list of all the configs present in `IWSLT/iwslt2017`. This should not be the case since as mentioned in their original paper (please see https://aclanthology.org/2017.iwslt-1.1.pdf), the authors specify that "_this year we proposed the multilingual translation between any pair of languages from {Dutch, English, German, Italian, Romanian}..._" and because these datasets are indeed present in `data/2017-01-trnmted/texts/DeEnItNlRo/DeEnItNlRo/DeEnItNlRo-DeEnItNlRo.zip`. Best Regards, Anand ### Steps to reproduce the bug Check the output of `get_dataset_config_names("IWSLT/iwslt2017", trust_remote_code=True)`: only 24 language pairs are present and the following 6 config names are absent: `iwslt2017-de-it`, `iwslt2017-de-ro`, `iwslt2017-de-nl`, `iwslt2017-it-de`, `iwslt2017-nl-de`, and `iwslt2017-ro-de`. ### Expected behavior The aforementioned 6 language pairs should also be present and hence, all these 6 language pairs' IWSLT2017 datasets must also be available for further use. I would suggest removing `de` from the `BI_LANGUAGES` list and moving it over to the `MULTI_LANGUAGES` list instead in `iwslt2017.py` to account for all the 6 missing language pairs (the same `de-en` dataset is present in both `data/2017-01-trnmted/texts/DeEnItNlRo/DeEnItNlRo/DeEnItNlRo-DeEnItNlRo.zip` and `data/2017-01-trnted/texts/de/en/de-en.zip` but the `de-ro`, `de-nl`, `it-de`, `nl-de`, and `ro-de` datasets are only present in `data/2017-01-trnmted/texts/DeEnItNlRo/DeEnItNlRo/DeEnItNlRo-DeEnItNlRo.zip`: so, its unclear why the following comment: _`# XXX: Artificially removed DE from here, as it also exists within bilingual data`_ has been added as `L71` in `iwslt2017.py`). The `README.md` file in `IWSLT/iwslt2017`must then be re-created using `datasets-cli test path/to/iwslt2017.py --save_info --all_configs` to pass all split size verification checks for the 6 new language pairs which were previously non-existent. ### Environment info - `datasets` version: 3.5.0 - Platform: Linux-6.8.0-56-generic-x86_64-with-glibc2.39 - Python version: 3.12.3 - `huggingface_hub` version: 0.30.1 - PyArrow version: 19.0.1 - Pandas version: 2.2.3 - `fsspec` version: 2024.12.0
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7574/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7574/timeline
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7573
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7573/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7573/comments
https://api.github.com/repos/huggingface/datasets/issues/7573/events
https://github.com/huggingface/datasets/issues/7573
3,076,415,382
I_kwDODunzps63Xl-W
7,573
No Samsum dataset
{ "avatar_url": "https://avatars.githubusercontent.com/u/17688220?v=4", "events_url": "https://api.github.com/users/IgorKasianenko/events{/privacy}", "followers_url": "https://api.github.com/users/IgorKasianenko/followers", "following_url": "https://api.github.com/users/IgorKasianenko/following{/other_user}", "gists_url": "https://api.github.com/users/IgorKasianenko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/IgorKasianenko", "id": 17688220, "login": "IgorKasianenko", "node_id": "MDQ6VXNlcjE3Njg4MjIw", "organizations_url": "https://api.github.com/users/IgorKasianenko/orgs", "received_events_url": "https://api.github.com/users/IgorKasianenko/received_events", "repos_url": "https://api.github.com/users/IgorKasianenko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/IgorKasianenko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/IgorKasianenko/subscriptions", "type": "User", "url": "https://api.github.com/users/IgorKasianenko", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "According to the following https://huggingface.co/posts/seawolf2357/424129432408590, as of now the dataset seems to be inaccessible.\n\n@IgorKasianenko, would https://huggingface.co/datasets/knkarthick/samsum suffice for your purpose?\n", "Thanks @SP1029 for the update!\nThat will work for now, using it as replacement. Is there a officially recommended way to maintain the CC licensed dataset under the organization account? \nFeel free to close this issue", "> Is there an officially recommended way to maintain a CC-licensed dataset under an organizational account?\n\n@IgorKasianenko, apologies, this is not my area of expertise.\n\n> Please feel free to close this issue.\n\nI have limited access and may not be able to do that. Since you opened it, you would be able to close it.", "dataset_samsum = load_dataset(\"knkarthick/samsum\")\n\nis working" ]
2025-05-20T09:54:35Z
2025-07-21T18:34:34Z
2025-06-18T12:52:23Z
NONE
null
null
null
null
### Describe the bug https://huggingface.co/datasets/Samsung/samsum dataset not found error 404 Originated from https://github.com/meta-llama/llama-cookbook/issues/948 ### Steps to reproduce the bug go to website https://huggingface.co/datasets/Samsung/samsum see the error also downloading it with python throws ``` Couldn't find 'Samsung/samsum' on the Hugging Face Hub either: FileNotFoundError: Samsung/samsum@f00baf5a7d4abfec6820415493bcb52c587788e6/samsum.py (repository not found) ``` ### Expected behavior Dataset exists ### Environment info ``` - `datasets` version: 3.2.0 - Platform: macOS-15.4.1-arm64-arm-64bit - Python version: 3.12.2 - `huggingface_hub` version: 0.26.5 - PyArrow version: 16.1.0 - Pandas version: 2.2.3 - `fsspec` version: 2024.9.0 ```
{ "avatar_url": "https://avatars.githubusercontent.com/u/17688220?v=4", "events_url": "https://api.github.com/users/IgorKasianenko/events{/privacy}", "followers_url": "https://api.github.com/users/IgorKasianenko/followers", "following_url": "https://api.github.com/users/IgorKasianenko/following{/other_user}", "gists_url": "https://api.github.com/users/IgorKasianenko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/IgorKasianenko", "id": 17688220, "login": "IgorKasianenko", "node_id": "MDQ6VXNlcjE3Njg4MjIw", "organizations_url": "https://api.github.com/users/IgorKasianenko/orgs", "received_events_url": "https://api.github.com/users/IgorKasianenko/received_events", "repos_url": "https://api.github.com/users/IgorKasianenko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/IgorKasianenko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/IgorKasianenko/subscriptions", "type": "User", "url": "https://api.github.com/users/IgorKasianenko", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7573/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7573/timeline
null
completed
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7570
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7570/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7570/comments
https://api.github.com/repos/huggingface/datasets/issues/7570/events
https://github.com/huggingface/datasets/issues/7570
3,065,966,529
I_kwDODunzps62vu_B
7,570
Dataset lib seems to broke after fssec lib update
{ "avatar_url": "https://avatars.githubusercontent.com/u/81933585?v=4", "events_url": "https://api.github.com/users/sleepingcat4/events{/privacy}", "followers_url": "https://api.github.com/users/sleepingcat4/followers", "following_url": "https://api.github.com/users/sleepingcat4/following{/other_user}", "gists_url": "https://api.github.com/users/sleepingcat4/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/sleepingcat4", "id": 81933585, "login": "sleepingcat4", "node_id": "MDQ6VXNlcjgxOTMzNTg1", "organizations_url": "https://api.github.com/users/sleepingcat4/orgs", "received_events_url": "https://api.github.com/users/sleepingcat4/received_events", "repos_url": "https://api.github.com/users/sleepingcat4/repos", "site_admin": false, "starred_url": "https://api.github.com/users/sleepingcat4/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sleepingcat4/subscriptions", "type": "User", "url": "https://api.github.com/users/sleepingcat4", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "Hi, can you try updating `datasets` ? Colab still installs `datasets` 2.x by default, instead of 3.x\n\nIt would be cool to also report this to google colab, they have a GitHub repo for this IIRC", "@lhoestq I have updated it to `datasets==3.6.0` and now there's an entirely different issue on colab while locally its fine. \n\n```\n/usr/local/lib/python3.11/dist-packages/huggingface_hub/utils/_auth.py:94: UserWarning: \nThe secret `HF_TOKEN` does not exist in your Colab secrets.\nTo authenticate with the Hugging Face Hub, create a token in your settings tab (https://huggingface.co/settings/tokens), set it as secret in your Google Colab and restart your session.\nYou will be able to reuse this secret in all of your notebooks.\nPlease note that authentication is recommended but still optional to access public models or datasets.\n warnings.warn(\nREADME.md: 100%\n 2.88k/2.88k [00:00<00:00, 166kB/s]\nsuno.jsonl.zst: 100%\n 221M/221M [00:05<00:00, 48.6MB/s]\nGenerating train split: \n 18633/0 [00:01<00:00, 13018.92 examples/s]\n---------------------------------------------------------------------------\nTypeError Traceback (most recent call last)\n[/usr/local/lib/python3.11/dist-packages/datasets/builder.py](https://localhost:8080/#) in _prepare_split_single(self, gen_kwargs, fpath, file_format, max_shard_size, job_id)\n 1870 try:\n-> 1871 writer.write_table(table)\n 1872 except CastError as cast_error:\n\n17 frames\nTypeError: Couldn't cast array of type\nstruct<id: string, type: string, infill: bool, source: string, continue_at: double, infill_dur_s: double, infill_end_s: double, infill_start_s: double, include_future_s: double, include_history_s: double, infill_context_end_s: double, infill_context_start_s: int64>\nto\n{'id': Value(dtype='string', id=None), 'type': Value(dtype='string', id=None), 'infill': Value(dtype='bool', id=None), 'source': Value(dtype='string', id=None), 'continue_at': Value(dtype='float64', id=None), 'include_history_s': Value(dtype='float64', id=None)}\n\nThe above exception was the direct cause of the following exception:\n\nDatasetGenerationError Traceback (most recent call last)\n[/usr/local/lib/python3.11/dist-packages/datasets/builder.py](https://localhost:8080/#) in _prepare_split_single(self, gen_kwargs, fpath, file_format, max_shard_size, job_id)\n 1896 if isinstance(e, DatasetGenerationError):\n 1897 raise\n-> 1898 raise DatasetGenerationError(\"An error occurred while generating the dataset\") from e\n 1899 \n 1900 yield job_id, True, (total_num_examples, total_num_bytes, writer._features, num_shards, shard_lengths)\n\nDatasetGenerationError: An error occurred while generating the dataset\n```", "@lhoestq opps sorry the dataset was in .zst which was causing this error rather than being a datasets library fault. After upgrading dataset version Colab is working fine. " ]
2025-05-15T11:45:06Z
2025-06-13T00:44:27Z
2025-06-13T00:44:27Z
NONE
null
null
null
null
### Describe the bug I am facing an issue since today where HF's dataset is acting weird and in some instances failure to recognise a valid dataset entirely, I think it is happening due to recent change in `fsspec` lib as using this command fixed it for me in one-time: `!pip install -U datasets huggingface_hub fsspec` ### Steps to reproduce the bug from datasets import load_dataset def download_hf(): dataset_name = input("Enter the dataset name: ") subset_name = input("Enter subset name: ") ds = load_dataset(dataset_name, name=subset_name) for split in ds: ds[split].to_pandas().to_csv(f"{subset_name}.csv", index=False) download_hf() ### Expected behavior ``` Downloading readme: 100%  1.55k/1.55k [00:00<00:00, 121kB/s] Downloading data files: 100%  1/1 [00:00<00:00,  2.06it/s] Downloading data: 0%| | 0.00/54.2k [00:00<?, ?B/s] Downloading data: 100%|██████████| 54.2k/54.2k [00:00<00:00, 121kB/s] Extracting data files: 100%  1/1 [00:00<00:00, 35.17it/s] Generating test split:   140/0 [00:00<00:00, 2628.62 examples/s] --------------------------------------------------------------------------- NotImplementedError Traceback (most recent call last) [<ipython-input-2-12ab305b0e77>](https://localhost:8080/#) in <cell line: 0>() 8 ds[split].to_pandas().to_csv(f"{subset_name}.csv", index=False) 9 ---> 10 download_hf() 2 frames [/usr/local/lib/python3.11/dist-packages/datasets/builder.py](https://localhost:8080/#) in as_dataset(self, split, run_post_process, verification_mode, ignore_verifications, in_memory) 1171 is_local = not is_remote_filesystem(self._fs) 1172 if not is_local: -> 1173 raise NotImplementedError(f"Loading a dataset cached in a {type(self._fs).__name__} is not supported.") 1174 if not os.path.exists(self._output_dir): 1175 raise FileNotFoundError( NotImplementedError: Loading a dataset cached in a LocalFileSystem is not supported. ``` OR ``` Traceback (most recent call last): File "e:\Fuck\download-data\mcq_dataset.py", line 10, in <module> download_hf() File "e:\Fuck\download-data\mcq_dataset.py", line 6, in download_hf ds = load_dataset(dataset_name, name=subset_name) File "C:\Users\DELL\AppData\Local\Programs\Python\Python310\lib\site-packages\datasets\load.py", line 2606, in load_dataset builder_instance = load_dataset_builder( File "C:\Users\DELL\AppData\Local\Programs\Python\Python310\lib\site-packages\datasets\load.py", line 2277, in load_dataset_builder dataset_module = dataset_module_factory( File "C:\Users\DELL\AppData\Local\Programs\Python\Python310\lib\site-packages\datasets\load.py", line 1917, in dataset_module_factory raise e1 from None File "C:\Users\DELL\AppData\Local\Programs\Python\Python310\lib\site-packages\datasets\load.py", line 1867, in dataset_module_factory raise DatasetNotFoundError(f"Dataset '{path}' doesn't exist on the Hub or cannot be accessed.") from e datasets.exceptions.DatasetNotFoundError: Dataset 'dataset repo_id' doesn't exist on the Hub or cannot be accessed. ``` ### Environment info colab and 3.10 local system
{ "avatar_url": "https://avatars.githubusercontent.com/u/81933585?v=4", "events_url": "https://api.github.com/users/sleepingcat4/events{/privacy}", "followers_url": "https://api.github.com/users/sleepingcat4/followers", "following_url": "https://api.github.com/users/sleepingcat4/following{/other_user}", "gists_url": "https://api.github.com/users/sleepingcat4/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/sleepingcat4", "id": 81933585, "login": "sleepingcat4", "node_id": "MDQ6VXNlcjgxOTMzNTg1", "organizations_url": "https://api.github.com/users/sleepingcat4/orgs", "received_events_url": "https://api.github.com/users/sleepingcat4/received_events", "repos_url": "https://api.github.com/users/sleepingcat4/repos", "site_admin": false, "starred_url": "https://api.github.com/users/sleepingcat4/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sleepingcat4/subscriptions", "type": "User", "url": "https://api.github.com/users/sleepingcat4", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7570/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7570/timeline
null
completed
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7569
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7569/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7569/comments
https://api.github.com/repos/huggingface/datasets/issues/7569/events
https://github.com/huggingface/datasets/issues/7569
3,061,234,054
I_kwDODunzps62drmG
7,569
Dataset creation is broken if nesting a dict inside a dict inside a list
{ "avatar_url": "https://avatars.githubusercontent.com/u/25732590?v=4", "events_url": "https://api.github.com/users/TimSchneider42/events{/privacy}", "followers_url": "https://api.github.com/users/TimSchneider42/followers", "following_url": "https://api.github.com/users/TimSchneider42/following{/other_user}", "gists_url": "https://api.github.com/users/TimSchneider42/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/TimSchneider42", "id": 25732590, "login": "TimSchneider42", "node_id": "MDQ6VXNlcjI1NzMyNTkw", "organizations_url": "https://api.github.com/users/TimSchneider42/orgs", "received_events_url": "https://api.github.com/users/TimSchneider42/received_events", "repos_url": "https://api.github.com/users/TimSchneider42/repos", "site_admin": false, "starred_url": "https://api.github.com/users/TimSchneider42/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/TimSchneider42/subscriptions", "type": "User", "url": "https://api.github.com/users/TimSchneider42", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "Hi ! That's because Séquence is a type that comes from tensorflow datasets and inverts lists and focus when doing Séquence(dict).\n\nInstead you should use a list. In your case\n```python\nfeatures = Features({\n \"a\": [{\"b\": {\"c\": Value(\"string\")}}]\n})\n```", "Hi,\n\nThanks for the swift reply! Could you quickly clarify a couple of points?\n\n1. Is there any benefit in using Sequence over normal lists? Especially for longer lists (in my case, up to 256 entries)\n2. When exactly can I use Sequence? If there is a maximum of one level of dictionaries inside, then it's always fine?\n3. When creating the data in the generator, do I need to swap lists and dicts manually, or does that happen automatically?\n\nAlso, the documentation does not seem to mention this limitation of the Sequence type anywhere and encourages users to use it [here](https://huggingface.co/docs/datasets/en/about_dataset_features). In fact, I did not even know that just using a Python list was an option. Maybe the documentation can be improved to mention the limitations of Sequence and highlight that lists can be used instead.\n\nThanks a lot in advance!\n\nBest,\nTim" ]
2025-05-13T21:06:45Z
2025-05-20T19:25:15Z
null
NONE
null
null
null
null
### Describe the bug Hey, I noticed that the creation of datasets with `Dataset.from_generator` is broken if dicts and lists are nested in a certain way and a schema is being passed. See below for details. Best, Tim ### Steps to reproduce the bug Runing this code: ```python from datasets import Dataset, Features, Sequence, Value def generator(): yield { "a": [{"b": {"c": 0}}], } features = Features( { "a": Sequence( feature={ "b": { "c": Value("int32"), }, }, length=1, ) } ) dataset = Dataset.from_generator(generator, features=features) ``` leads to ``` Generating train split: 1 examples [00:00, 540.85 examples/s] Traceback (most recent call last): File "/home/user/miniconda3/envs/test/lib/python3.11/site-packages/datasets/builder.py", line 1635, in _prepare_split_single num_examples, num_bytes = writer.finalize() ^^^^^^^^^^^^^^^^^ File "/home/user/miniconda3/envs/test/lib/python3.11/site-packages/datasets/arrow_writer.py", line 657, in finalize self.write_examples_on_file() File "/home/user/miniconda3/envs/test/lib/python3.11/site-packages/datasets/arrow_writer.py", line 510, in write_examples_on_file self.write_batch(batch_examples=batch_examples) File "/home/user/miniconda3/envs/test/lib/python3.11/site-packages/datasets/arrow_writer.py", line 629, in write_batch pa_table = pa.Table.from_arrays(arrays, schema=schema) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "pyarrow/table.pxi", line 4851, in pyarrow.lib.Table.from_arrays File "pyarrow/table.pxi", line 1608, in pyarrow.lib._sanitize_arrays File "pyarrow/array.pxi", line 399, in pyarrow.lib.asarray File "pyarrow/array.pxi", line 1004, in pyarrow.lib.Array.cast File "/home/user/miniconda3/envs/test/lib/python3.11/site-packages/pyarrow/compute.py", line 405, in cast return call_function("cast", [arr], options, memory_pool) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "pyarrow/_compute.pyx", line 598, in pyarrow._compute.call_function File "pyarrow/_compute.pyx", line 393, in pyarrow._compute.Function.call File "pyarrow/error.pxi", line 155, in pyarrow.lib.pyarrow_internal_check_status File "pyarrow/error.pxi", line 92, in pyarrow.lib.check_status pyarrow.lib.ArrowNotImplementedError: Unsupported cast from fixed_size_list<item: struct<c: int32>>[1] to struct using function cast_struct The above exception was the direct cause of the following exception: Traceback (most recent call last): File "/home/user/test/tools/hf_test2.py", line 23, in <module> dataset = Dataset.from_generator(generator, features=features) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/user/miniconda3/envs/test/lib/python3.11/site-packages/datasets/arrow_dataset.py", line 1114, in from_generator ).read() ^^^^^^ File "/home/user/miniconda3/envs/test/lib/python3.11/site-packages/datasets/io/generator.py", line 49, in read self.builder.download_and_prepare( File "/home/user/miniconda3/envs/test/lib/python3.11/site-packages/datasets/builder.py", line 925, in download_and_prepare self._download_and_prepare( File "/home/user/miniconda3/envs/test/lib/python3.11/site-packages/datasets/builder.py", line 1649, in _download_and_prepare super()._download_and_prepare( File "/home/user/miniconda3/envs/test/lib/python3.11/site-packages/datasets/builder.py", line 1001, in _download_and_prepare self._prepare_split(split_generator, **prepare_split_kwargs) File "/home/user/miniconda3/envs/test/lib/python3.11/site-packages/datasets/builder.py", line 1487, in _prepare_split for job_id, done, content in self._prepare_split_single( File "/home/user/miniconda3/envs/test/lib/python3.11/site-packages/datasets/builder.py", line 1644, in _prepare_split_single raise DatasetGenerationError("An error occurred while generating the dataset") from e datasets.exceptions.DatasetGenerationError: An error occurred while generating the dataset Process finished with exit code 1 ``` ### Expected behavior I expected this code not to lead to an error. I have done some digging and figured out that the problem seems to be the `get_nested_type` function in `features.py`, which, for whatever reason, flips Sequences and dicts whenever it encounters a dict inside of a sequence. This seems to be necessary, as disabling that flip leads to another error. However, by keeping that flip enabled for the highest level and disabling it for all subsequent levels, I was able to work around this problem. Specifically, by patching `get_nested_type` as follows, it works on the given example (emphasis on the `level` parameter I added): ```python def get_nested_type(schema: FeatureType, level=0) -> pa.DataType: """ get_nested_type() converts a datasets.FeatureType into a pyarrow.DataType, and acts as the inverse of generate_from_arrow_type(). It performs double-duty as the implementation of Features.type and handles the conversion of datasets.Feature->pa.struct """ # Nested structures: we allow dict, list/tuples, sequences if isinstance(schema, Features): return pa.struct( {key: get_nested_type(schema[key], level = level + 1) for key in schema} ) # Features is subclass of dict, and dict order is deterministic since Python 3.6 elif isinstance(schema, dict): return pa.struct( {key: get_nested_type(schema[key], level = level + 1) for key in schema} ) # however don't sort on struct types since the order matters elif isinstance(schema, (list, tuple)): if len(schema) != 1: raise ValueError("When defining list feature, you should just provide one example of the inner type") value_type = get_nested_type(schema[0], level = level + 1) return pa.list_(value_type) elif isinstance(schema, LargeList): value_type = get_nested_type(schema.feature, level = level + 1) return pa.large_list(value_type) elif isinstance(schema, Sequence): value_type = get_nested_type(schema.feature, level = level + 1) # We allow to reverse list of dict => dict of list for compatibility with tfds if isinstance(schema.feature, dict) and level == 1: data_type = pa.struct({f.name: pa.list_(f.type, schema.length) for f in value_type}) else: data_type = pa.list_(value_type, schema.length) return data_type # Other objects are callable which returns their data type (ClassLabel, Array2D, Translation, Arrow datatype creation methods) return schema() ``` I have honestly no idea what I am doing here, so this might produce other issues for different inputs. ### Environment info - `datasets` version: 3.6.0 - Platform: Linux-6.8.0-59-generic-x86_64-with-glibc2.35 - Python version: 3.11.11 - `huggingface_hub` version: 0.30.2 - PyArrow version: 19.0.1 - Pandas version: 2.2.3 - `fsspec` version: 2024.12.0 Also tested it with 3.5.0, same result.
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7569/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7569/timeline
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7568
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7568/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7568/comments
https://api.github.com/repos/huggingface/datasets/issues/7568/events
https://github.com/huggingface/datasets/issues/7568
3,060,515,257
I_kwDODunzps62a8G5
7,568
`IterableDatasetDict.map()` call removes `column_names` (in fact info.features)
{ "avatar_url": "https://avatars.githubusercontent.com/u/7893763?v=4", "events_url": "https://api.github.com/users/mombip/events{/privacy}", "followers_url": "https://api.github.com/users/mombip/followers", "following_url": "https://api.github.com/users/mombip/following{/other_user}", "gists_url": "https://api.github.com/users/mombip/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mombip", "id": 7893763, "login": "mombip", "node_id": "MDQ6VXNlcjc4OTM3NjM=", "organizations_url": "https://api.github.com/users/mombip/orgs", "received_events_url": "https://api.github.com/users/mombip/received_events", "repos_url": "https://api.github.com/users/mombip/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mombip/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mombip/subscriptions", "type": "User", "url": "https://api.github.com/users/mombip", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "Hi ! IterableDataset doesn't know what's the output of the function you pass to map(), so it's not possible to know in advance the features of the output dataset.\n\nThere is a workaround though: either do `ds = ds.map(..., features=features)`, or you can do `ds = ds._resolve_features()` which iterates on the first rows to infer the dataset features.", "Thank you. I understand that “IterableDataset doesn't know what's the output of the function”—that’s true, but:\n\nUnfortunately, the workaround you proposed **doesn’t solve** the problem. `ds.map()` is called multiple times by third-party code (i.e. `SFTTrainer`). To apply your approach, I would have to modify external library code. That’s why I decided to patch the _class_ rather than update `dataset` _objects_ (in fact, updating the object after `map()` was my initial approach, but then I realized I’m not the only one mapping an already-mapped dataset.)\n\nAs a user, I expected that after mapping I would get a new dataset with the correct column names. If, for some reason, that can’t be the default behavior, I would expect an argument—i.e. `auto_resolve_features: bool = False` — to control how my dataset is mapped if following mapping operation are called.\n\nIt’s also problematic that `column_names` are tied to `features`, which is even more confusing and forces you to inspect the source code to understand what’s going on.\n\n**New version of workaround:**\n```python\ndef patch_iterable_dataset_map():\n _orig_map = IterableDataset.map\n\n def _patched_map(self, *args, **kwargs):\n ds = _orig_map(self, *args, **kwargs)\n return ds._resolve_features()\n\n IterableDataset.map = _patched_map\n```", "I see, maybe `.resolve_features()` should be called by default in this case in the SFTTrainer ? (or pass `features=` if the data processing always output the same features)\n\nWe can even support a new parameter `features=\"infer\"` if it would be comfortable to not use internal methods in SFTTrainer", "I think most straightforward solution would be to reinitialize `features` from data after mapping if `feature` argument is not passed. I hink it is more intuitive behavior than just cleaning features. There is also problem in usage `.resolve_features()` in this context. I observed that it leads to `_head()` method execution and it then causes that 5 batches from dataset are iterated (`_head()` defaults to 5 batches). \nI'm not sure how it influences whole process. Are those 5 batches (in my case it's 5000 rows) used only to find `features`. Does final training/eval process \"see\" this items? How it affects IterableDataset state (current position)?", "I checked the source code and while it indeed iterates on the first 5 rows. As a normal iteration, it does record the state in case you call `.state_dict()`, but it doesn't change the starting state. The starting state is always the beginning of the dataset, unless it is explicitly set with `.load_state_dict()`. To be clear, if you iterate on the dataset after `._resolve_features()`, it will start from the beginning of the dataset (or from a state you manually pass using `.load_state_dict()`)", "Hi!\nI’ve opened a PR #7658 to address this issue.\n\nThe fix ensures that info.features is only updated if features is not None, preventing accidental loss of schema and column_names.\nPlease let me know if you see any edge cases or have additional concerns!\nAlso, if a test is needed for this case, happy to discuss—the fix is small, but I can add one if the maintainers prefer.\n\nThanks everyone for the clear diagnosis and suggestions in this thread!" ]
2025-05-13T15:45:42Z
2025-06-30T09:33:47Z
null
NONE
null
null
null
null
When calling `IterableDatasetDict.map()`, each split’s `IterableDataset.map()` is invoked without a `features` argument. While omitting the argument isn’t itself incorrect, the implementation then sets `info.features = features`, which destroys the original `features` content. Since `IterableDataset.column_names` relies on `info.features`, it ends up broken (`None`). **Reproduction** 1. Define an IterableDatasetDict with a non-None features schema. 2. my_iterable_dataset_dict contains "text" column. 3. Call: ```Python new_dict = my_iterable_dataset_dict.map( function=my_fn, with_indices=False, batched=True, batch_size=16, ) ``` 4. Observe ```Python new_dict["train"].info.features # {'text': Value(dtype='string', id=None)} new_dict["train"].column_names # ['text'] ``` 5. Call: ```Python new_dict = my_iterable_dataset_dict.map( function=my_fn, with_indices=False, batched=True, batch_size=16, remove_columns=["foo"] ) ``` 6. Observe: ```Python new_dict["train"].info.features # → None new_dict["train"].column_names # → None ``` 5. Internally, in dataset_dict.py this loop omits features ([code](https://github.com/huggingface/datasets/blob/b9efdc64c3bfb8f21f8a4a22b21bddd31ecd5a31/src/datasets/dataset_dict.py#L2047C5-L2056C14)): ```Python for split, dataset in self.items(): dataset_dict[split] = dataset.map( function=function, with_indices=with_indices, input_columns=input_columns, batched=batched, batch_size=batch_size, drop_last_batch=drop_last_batch, remove_columns=remove_columns, fn_kwargs=fn_kwargs, # features omitted → defaults to None ) ``` 7. Then inside IterableDataset.map() ([code](https://github.com/huggingface/datasets/blob/b9efdc64c3bfb8f21f8a4a22b21bddd31ecd5a31/src/datasets/iterable_dataset.py#L2619C1-L2622C37)) correct `info.features` is replaced by features which is None: ```Python info = self.info.copy() info.features = features # features is None here return IterableDataset(..., info=info, ...) ``` **Suggestion** It looks like this replacement was added intentionally but maybe should be done only if `features` is `not None`. **Workarround:** `SFTTrainer` calls `dataset.map()` several times and then fails on `NoneType` when iterating `dataset.column_names`. I decided to write this patch - works form me. ```python def patch_iterable_dataset_map(): _orig_map = IterableDataset.map def _patched_map(self, *args, **kwargs): if "features" not in kwargs or kwargs["features"] is None: kwargs["features"] = self.info.features return _orig_map(self, *args, **kwargs) IterableDataset.map = _patched_map ```
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7568/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7568/timeline
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7567
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7567/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7567/comments
https://api.github.com/repos/huggingface/datasets/issues/7567/events
https://github.com/huggingface/datasets/issues/7567
3,058,308,538
I_kwDODunzps62ShW6
7,567
interleave_datasets seed with multiple workers
{ "avatar_url": "https://avatars.githubusercontent.com/u/511073?v=4", "events_url": "https://api.github.com/users/jonathanasdf/events{/privacy}", "followers_url": "https://api.github.com/users/jonathanasdf/followers", "following_url": "https://api.github.com/users/jonathanasdf/following{/other_user}", "gists_url": "https://api.github.com/users/jonathanasdf/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/jonathanasdf", "id": 511073, "login": "jonathanasdf", "node_id": "MDQ6VXNlcjUxMTA3Mw==", "organizations_url": "https://api.github.com/users/jonathanasdf/orgs", "received_events_url": "https://api.github.com/users/jonathanasdf/received_events", "repos_url": "https://api.github.com/users/jonathanasdf/repos", "site_admin": false, "starred_url": "https://api.github.com/users/jonathanasdf/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/jonathanasdf/subscriptions", "type": "User", "url": "https://api.github.com/users/jonathanasdf", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "Hi ! It's already the case IIRC: the effective seed looks like `seed + worker_id`. Do you have a reproducible example ?", "here is an example with shuffle\n\n```\nimport itertools\nimport datasets\nimport multiprocessing\nimport torch.utils.data\n\n\ndef gen(shard):\n worker_info = torch.utils.data.get_worker_info()\n for i in range(10):\n yield {'value': i, 'worker_id': worker_info.id}\n\n\ndef main():\n ds = datasets.IterableDataset.from_generator(gen, gen_kwargs={'shard': list(range(8))})\n ds = ds.shuffle(buffer_size=100, seed=1234)\n dataloader = torch.utils.data.DataLoader(ds, batch_size=None, num_workers=8)\n for i, ex in enumerate(itertools.islice(dataloader, 50)):\n print(i, ex)\n\n\nif __name__ == '__main__':\n multiprocessing.set_start_method('spawn')\n main()\n```\n\n```\npython test.py\n0 {'value': 8, 'worker_id': 0}\n1 {'value': 8, 'worker_id': 1}\n2 {'value': 8, 'worker_id': 2}\n3 {'value': 8, 'worker_id': 3}\n4 {'value': 8, 'worker_id': 4}\n5 {'value': 8, 'worker_id': 5}\n6 {'value': 8, 'worker_id': 6}\n7 {'value': 8, 'worker_id': 7}\n8 {'value': 9, 'worker_id': 0}\n9 {'value': 9, 'worker_id': 1}\n10 {'value': 9, 'worker_id': 2}\n11 {'value': 9, 'worker_id': 3}\n12 {'value': 9, 'worker_id': 4}\n13 {'value': 9, 'worker_id': 5}\n14 {'value': 9, 'worker_id': 6}\n15 {'value': 9, 'worker_id': 7}\n16 {'value': 5, 'worker_id': 0}\n17 {'value': 5, 'worker_id': 1}\n18 {'value': 5, 'worker_id': 2}\n19 {'value': 5, 'worker_id': 3}\n```", "With `interleave_datasets`\n\n```\nimport itertools\nimport datasets\nimport multiprocessing\nimport torch.utils.data\n\n\ndef gen(shard, value):\n while True:\n yield {'value': value}\n\n\ndef main():\n ds = [\n datasets.IterableDataset.from_generator(gen, gen_kwargs={'shard': list(range(8)), 'value': i})\n for i in range(10)\n ]\n ds = datasets.interleave_datasets(ds, probabilities=[1 / len(ds)] * len(ds), seed=1234)\n dataloader = torch.utils.data.DataLoader(ds, batch_size=None, num_workers=8)\n for i, ex in enumerate(itertools.islice(dataloader, 50)):\n print(i, ex)\n\n\nif __name__ == '__main__':\n multiprocessing.set_start_method('spawn')\n main()\n```\n\n```\npython test.py\n0 {'value': 9}\n1 {'value': 9}\n2 {'value': 9}\n3 {'value': 9}\n4 {'value': 9}\n5 {'value': 9}\n6 {'value': 9}\n7 {'value': 9}\n8 {'value': 3}\n9 {'value': 3}\n10 {'value': 3}\n11 {'value': 3}\n12 {'value': 3}\n13 {'value': 3}\n14 {'value': 3}\n15 {'value': 3}\n16 {'value': 9}\n17 {'value': 9}\n18 {'value': 9}\n19 {'value': 9}\n20 {'value': 9}\n21 {'value': 9}\n22 {'value': 9}\n23 {'value': 9}\n```", "Same results after updating to datasets 3.6.0.", "Ah my bad, `shuffle()` uses a global effective seed which is something like `seed + epoch`, which is used to do the same shards shuffle in each worker so that each worker have a non-overlapping set of shards:\n\nhttps://github.com/huggingface/datasets/blob/b9efdc64c3bfb8f21f8a4a22b21bddd31ecd5a31/src/datasets/iterable_dataset.py#L2102-L2111\n\nI think we should take into account the `worker_id` in a local seed for the buffer right after this line:\n\nhttps://github.com/huggingface/datasets/blob/b9efdc64c3bfb8f21f8a4a22b21bddd31ecd5a31/src/datasets/iterable_dataset.py#L2151-L2153\n\nlike adding a new step that would propagate in the examples iterables or something like that:\n\n```python\nex_iterable = ex_iterable.shift_rngs(value=worker_id)\n```\n\nis this something you'd like to explore ? contributions on this subject are very welcome", "Potentially, but busy. If anyone wants to take this up please feel free to, otherwise I may or may not revisit when I have free time.\n\nFor what it's worth I got around this with\n\n```\n\nclass SeedGeneratorWithWorkerIterable(iterable_dataset._BaseExamplesIterable):\n \"\"\"ExamplesIterable that seeds the rng with worker id.\"\"\"\n\n def __init__(\n self,\n ex_iterable: iterable_dataset._BaseExamplesIterable,\n generator: np.random.Generator,\n rank: int = 0,\n ):\n \"\"\"Constructor.\"\"\"\n super().__init__()\n self.ex_iterable = ex_iterable\n self.generator = generator\n self.rank = rank\n\n def _init_state_dict(self) -> dict:\n self._state_dict = self.ex_iterable._init_state_dict()\n return self._state_dict\n\n def __iter__(self):\n \"\"\"Data iterator.\"\"\"\n effective_seed = copy.deepcopy(self.generator).integers(0, 1 << 63) - self.rank\n effective_seed = (1 << 63) + effective_seed if effective_seed < 0 else effective_seed\n generator = np.random.default_rng(effective_seed)\n self.ex_iterable = self.ex_iterable.shuffle_data_sources(generator)\n if self._state_dict:\n self._state_dict = self.ex_iterable._init_state_dict()\n yield from iter(self.ex_iterable)\n\n def shuffle_data_sources(self, generator):\n \"\"\"Shuffle data sources.\"\"\"\n ex_iterable = self.ex_iterable.shuffle_data_sources(generator)\n return SeedGeneratorWithWorkerIterable(ex_iterable, generator=generator, rank=self.rank)\n\n def shard_data_sources(self, num_shards: int, index: int, contiguous=True): # noqa: FBT002\n \"\"\"Shard data sources.\"\"\"\n ex_iterable = self.ex_iterable.shard_data_sources(num_shards, index, contiguous=contiguous)\n return SeedGeneratorWithWorkerIterable(ex_iterable, generator=self.generator, rank=index)\n\n @property\n def is_typed(self):\n return self.ex_iterable.is_typed\n\n @property\n def features(self):\n return self.ex_iterable.features\n\n @property\n def num_shards(self) -> int:\n \"\"\"Number of shards.\"\"\"\n return self.ex_iterable.num_shards\n```", "Thanks for the detailed insights!\n\nAfter reviewing the issue and the current implementation in `iterable_dataset.py`, I can confirm the cause:\n\nWhen using `interleave_datasets(..., seed=...)` with `num_workers > 1` (e.g. via `DataLoader`), the same RNG state is shared across workers — which leads to each worker producing identical sample sequences. This is because the seed is not modulated by `worker_id`, unlike the usual approach in `shuffle()` where seed is adjusted using the `epoch`.\n\nAs @lhoestq suggested, a proper fix would involve introducing something like:\n\n```python\nex_iterable = ex_iterable.shift_rngs(worker_id)\n```\n\n@jonathanasdf Also really appreciate the workaround implementation shared above — that was helpful to validate the behavior and will help shape the general solution." ]
2025-05-12T22:38:27Z
2025-06-29T06:53:59Z
null
NONE
null
null
null
null
### Describe the bug Using interleave_datasets with multiple dataloader workers and a seed set causes the same dataset sampling order across all workers. Should the seed be modulated with the worker id? ### Steps to reproduce the bug See above ### Expected behavior See above ### Environment info - `datasets` version: 3.5.1 - Platform: macOS-15.4.1-arm64-arm-64bit - Python version: 3.12.9 - `huggingface_hub` version: 0.30.2 - PyArrow version: 19.0.1 - Pandas version: 2.2.3 - `fsspec` version: 2024.12.0
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7567/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7567/timeline
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7566
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7566/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7566/comments
https://api.github.com/repos/huggingface/datasets/issues/7566/events
https://github.com/huggingface/datasets/issues/7566
3,055,279,344
I_kwDODunzps62G9zw
7,566
terminate called without an active exception; Aborted (core dumped)
{ "avatar_url": "https://avatars.githubusercontent.com/u/18581488?v=4", "events_url": "https://api.github.com/users/alexey-milovidov/events{/privacy}", "followers_url": "https://api.github.com/users/alexey-milovidov/followers", "following_url": "https://api.github.com/users/alexey-milovidov/following{/other_user}", "gists_url": "https://api.github.com/users/alexey-milovidov/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/alexey-milovidov", "id": 18581488, "login": "alexey-milovidov", "node_id": "MDQ6VXNlcjE4NTgxNDg4", "organizations_url": "https://api.github.com/users/alexey-milovidov/orgs", "received_events_url": "https://api.github.com/users/alexey-milovidov/received_events", "repos_url": "https://api.github.com/users/alexey-milovidov/repos", "site_admin": false, "starred_url": "https://api.github.com/users/alexey-milovidov/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/alexey-milovidov/subscriptions", "type": "User", "url": "https://api.github.com/users/alexey-milovidov", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "@alexey-milovidov I followed the code snippet, but am able to successfully execute without any error. Could you please verify if the error persists or there is any additional details.", "@alexey-milovidov else if the problem does not exist please feel free to close this issue.", "```\nmilovidov@milovidov-pc:~/work/datasets$ \n./main.py \nResolving data files: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 25868/25868 [00:05<00:00, 4753.90it/s]\nResolving data files: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 25868/25868 [00:00<00:00, 238798.85it/s]\n{'text': \"How AP reported in all formats from tornado-stricken regionsMarch 8, 2012\\nWhen the first serious bout of tornadoes of 2012 blew through middle America in the middle of the night, they touched down in places hours from any AP bureau. Our closest video journalist was Chicago-based Robert Ray, who dropped his plans to travel to Georgia for Super Tuesday, booked several flights to the cities closest to the strikes and headed for the airport. He’d decide once there which flight to take.\\nHe never got on board a plane. Instead, he ended up driving toward Harrisburg, Ill., where initial reports suggested a town was destroyed. That decision turned out to be a lucky break for the AP. Twice.\\nRay was among the first journalists to arrive and he confirmed those reports -- in all formats. He shot powerful video, put victims on the phone with AP Radio and played back sound to an editor who transcribed the interviews and put the material on text wires. He then walked around the devastation with the Central Regional Desk on the line, talking to victims with the phone held so close that editors could transcribe his interviews in real time.\\nRay also made a dramatic image of a young girl who found a man’s prosthetic leg in the rubble, propped it up next to her destroyed home and spray-painted an impromptu sign: “Found leg. Seriously.”\\nThe following day, he was back on the road and headed for Georgia and a Super Tuesday date with Newt Gingrich’s campaign. The drive would take him through a stretch of the South that forecasters expected would suffer another wave of tornadoes.\\nTo prevent running into THAT storm, Ray used his iPhone to monitor Doppler radar, zooming in on extreme cells and using Google maps to direct himself to safe routes. And then the journalist took over again.\\n“When weather like that occurs, a reporter must seize the opportunity to get the news out and allow people to see, hear and read the power of nature so that they can take proper shelter,” Ray says.\\nSo Ray now started to use his phone to follow the storms. He attached a small GoPro camera to his steering wheel in case a tornado dropped down in front of the car somewhere, and took video of heavy rain and hail with his iPhone. Soon, he spotted a tornado and the chase was on. He followed an unmarked emergency vehicle to Cleveland, Tenn., where he was first on the scene of the storm's aftermath.\\nAgain, the tornadoes had struck in locations that were hours from the nearest AP bureau. Damage and debris, as well as a wickedly violent storm that made travel dangerous, slowed our efforts to get to the news. That wasn’t a problem in Tennessee, where our customers were well served by an all-formats report that included this text story.\\n“CLEVELAND, Tenn. (AP) _ Fierce wind, hail and rain lashed Tennessee for the second time in three days, and at least 15 people were hospitalized Friday in the Chattanooga area.”\\nThe byline? Robert Ray.\\nFor being adept with technology, chasing after news as it literally dropped from the sky and setting a standard for all-formats reporting that put the AP ahead on the most competitive news story of the day, Ray wins this week’s $300 Best of the States prize.\\n© 2013 The Associated Press. All rights reserved. Terms and conditions apply. See AP.org for details.\", 'id': '<urn:uuid:d66bc6fe-8477-4adf-b430-f6a558ccc8ff>', 'dump': 'CC-MAIN-2013-20', 'url': 'http://%[email protected]/Content/Press-Release/2012/How-AP-reported-in-all-formats-from-tornado-stricken-regions', 'date': '2013-05-18T05:48:54Z', 'file_path': 's3://commoncrawl/crawl-data/CC-MAIN-2013-20/segments/1368696381249/warc/CC-MAIN-20130516092621-00000-ip-10-60-113-184.ec2.internal.warc.gz', 'language': 'en', 'language_score': 0.9721424579620361, 'token_count': 717}\nterminate called without an active exception\nAborted (core dumped)\nmilovidov@milovidov-pc:~/work/datasets$ \npython3 --version\nPython 3.10.12\n```", "Thank you @alexey-milovidov for the details, was able to reproduce the issue.\n\nFollowing is a preliminary analysis which would help to further isolate the issue:\nOn local: \n- For alternate datasets e.g. `speed/english_quotes_paraphrase` instead of `HuggingFaceFW/fineweb` the code works\n- Multiple calls of `print(next(iter(dataset)))` can be performed successfully before the `terminate` is raised, indicating possibility of issue when connection is closed\n\nOn colab:\n- The above code works properly" ]
2025-05-11T23:05:54Z
2025-06-23T17:56:02Z
null
NONE
null
null
null
null
### Describe the bug I use it as in the tutorial here: https://huggingface.co/docs/datasets/stream, and it ends up with abort. ### Steps to reproduce the bug 1. `pip install datasets` 2. ``` $ cat main.py #!/usr/bin/env python3 from datasets import load_dataset dataset = load_dataset('HuggingFaceFW/fineweb', split='train', streaming=True) print(next(iter(dataset))) ``` 3. `chmod +x main.py` ``` $ ./main.py README.md: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 43.1k/43.1k [00:00<00:00, 7.04MB/s] Resolving data files: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 25868/25868 [00:05<00:00, 4859.26it/s] Resolving data files: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 25868/25868 [00:00<00:00, 54773.56it/s] {'text': "How AP reported in all formats from tornado-stricken regionsMarch 8, 2012\nWhen the first serious bout of tornadoes of 2012 blew through middle America in the middle of the night, they touched down in places hours from any AP bureau. Our closest video journalist was Chicago-based Robert Ray, who dropped his plans to travel to Georgia for Super Tuesday, booked several flights to the cities closest to the strikes and headed for the airport. He’d decide once there which flight to take.\nHe never got on board a plane. Instead, he ended up driving toward Harrisburg, Ill., where initial reports suggested a town was destroyed. That decision turned out to be a lucky break for the AP. Twice.\nRay was among the first journalists to arrive and he confirmed those reports -- in all formats. He shot powerful video, put victims on the phone with AP Radio and played back sound to an editor who transcribed the interviews and put the material on text wires. He then walked around the devastation with the Central Regional Desk on the line, talking to victims with the phone held so close that editors could transcribe his interviews in real time.\nRay also made a dramatic image of a young girl who found a man’s prosthetic leg in the rubble, propped it up next to her destroyed home and spray-painted an impromptu sign: “Found leg. Seriously.”\nThe following day, he was back on the road and headed for Georgia and a Super Tuesday date with Newt Gingrich’s campaign. The drive would take him through a stretch of the South that forecasters expected would suffer another wave of tornadoes.\nTo prevent running into THAT storm, Ray used his iPhone to monitor Doppler radar, zooming in on extreme cells and using Google maps to direct himself to safe routes. And then the journalist took over again.\n“When weather like that occurs, a reporter must seize the opportunity to get the news out and allow people to see, hear and read the power of nature so that they can take proper shelter,” Ray says.\nSo Ray now started to use his phone to follow the storms. He attached a small GoPro camera to his steering wheel in case a tornado dropped down in front of the car somewhere, and took video of heavy rain and hail with his iPhone. Soon, he spotted a tornado and the chase was on. He followed an unmarked emergency vehicle to Cleveland, Tenn., where he was first on the scene of the storm's aftermath.\nAgain, the tornadoes had struck in locations that were hours from the nearest AP bureau. Damage and debris, as well as a wickedly violent storm that made travel dangerous, slowed our efforts to get to the news. That wasn’t a problem in Tennessee, where our customers were well served by an all-formats report that included this text story.\n“CLEVELAND, Tenn. (AP) _ Fierce wind, hail and rain lashed Tennessee for the second time in three days, and at least 15 people were hospitalized Friday in the Chattanooga area.”\nThe byline? Robert Ray.\nFor being adept with technology, chasing after news as it literally dropped from the sky and setting a standard for all-formats reporting that put the AP ahead on the most competitive news story of the day, Ray wins this week’s $300 Best of the States prize.\n© 2013 The Associated Press. All rights reserved. Terms and conditions apply. See AP.org for details.", 'id': '<urn:uuid:d66bc6fe-8477-4adf-b430-f6a558ccc8ff>', 'dump': 'CC-MAIN-2013-20', 'url': 'http://%[email protected]/Content/Press-Release/2012/How-AP-reported-in-all-formats-from-tornado-stricken-regions', 'date': '2013-05-18T05:48:54Z', 'file_path': 's3://commoncrawl/crawl-data/CC-MAIN-2013-20/segments/1368696381249/warc/CC-MAIN-20130516092621-00000-ip-10-60-113-184.ec2.internal.warc.gz', 'language': 'en', 'language_score': 0.9721424579620361, 'token_count': 717} terminate called without an active exception Aborted (core dumped) ``` ### Expected behavior I'm not a proficient Python user, so it might be my own error, but even in that case, the error message should be better. ### Environment info `Successfully installed datasets-3.6.0 dill-0.3.8 hf-xet-1.1.0 huggingface-hub-0.31.1 multiprocess-0.70.16 requests-2.32.3 xxhash-3.5.0` ``` $ cat /etc/lsb-release DISTRIB_ID=Ubuntu DISTRIB_RELEASE=22.04 DISTRIB_CODENAME=jammy DISTRIB_DESCRIPTION="Ubuntu 22.04.4 LTS" ```
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7566/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7566/timeline
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7561
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7561/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7561/comments
https://api.github.com/repos/huggingface/datasets/issues/7561/events
https://github.com/huggingface/datasets/issues/7561
3,046,302,653
I_kwDODunzps61kuO9
7,561
NotImplementedError: <class 'datasets.iterable_dataset.RepeatExamplesIterable'> doesn't implement num_shards yet
{ "avatar_url": "https://avatars.githubusercontent.com/u/32219669?v=4", "events_url": "https://api.github.com/users/cyanic-selkie/events{/privacy}", "followers_url": "https://api.github.com/users/cyanic-selkie/followers", "following_url": "https://api.github.com/users/cyanic-selkie/following{/other_user}", "gists_url": "https://api.github.com/users/cyanic-selkie/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/cyanic-selkie", "id": 32219669, "login": "cyanic-selkie", "node_id": "MDQ6VXNlcjMyMjE5NjY5", "organizations_url": "https://api.github.com/users/cyanic-selkie/orgs", "received_events_url": "https://api.github.com/users/cyanic-selkie/received_events", "repos_url": "https://api.github.com/users/cyanic-selkie/repos", "site_admin": false, "starred_url": "https://api.github.com/users/cyanic-selkie/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/cyanic-selkie/subscriptions", "type": "User", "url": "https://api.github.com/users/cyanic-selkie", "user_view_type": "public" }
[]
closed
false
null
[]
null
[]
2025-05-07T15:05:42Z
2025-06-05T12:41:30Z
2025-06-05T12:41:30Z
NONE
null
null
null
null
### Describe the bug When using `.repeat()` on an `IterableDataset`, this error gets thrown. There is [this thread](https://discuss.huggingface.co/t/making-an-infinite-iterabledataset/146192/5) that seems to imply the fix is trivial, but I don't know anything about this codebase, so I'm opening this issue rather than attempting to open a PR. ### Steps to reproduce the bug 1. Create an `IterableDataset`. 2. Call `.repeat(None)` on it. 3. Wrap it in a pytorch `DataLoader` 4. Iterate over it. ### Expected behavior This should work normally. ### Environment info datasets: 3.5.0
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7561/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7561/timeline
null
completed
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7554
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7554/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7554/comments
https://api.github.com/repos/huggingface/datasets/issues/7554/events
https://github.com/huggingface/datasets/issues/7554
3,043,089,844
I_kwDODunzps61Yd20
7,554
datasets downloads and generates all splits, even though a single split is requested (for dataset with loading script)
{ "avatar_url": "https://avatars.githubusercontent.com/u/50171988?v=4", "events_url": "https://api.github.com/users/sei-eschwartz/events{/privacy}", "followers_url": "https://api.github.com/users/sei-eschwartz/followers", "following_url": "https://api.github.com/users/sei-eschwartz/following{/other_user}", "gists_url": "https://api.github.com/users/sei-eschwartz/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/sei-eschwartz", "id": 50171988, "login": "sei-eschwartz", "node_id": "MDQ6VXNlcjUwMTcxOTg4", "organizations_url": "https://api.github.com/users/sei-eschwartz/orgs", "received_events_url": "https://api.github.com/users/sei-eschwartz/received_events", "repos_url": "https://api.github.com/users/sei-eschwartz/repos", "site_admin": false, "starred_url": "https://api.github.com/users/sei-eschwartz/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sei-eschwartz/subscriptions", "type": "User", "url": "https://api.github.com/users/sei-eschwartz", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "Hi ! there has been some effort on allowing to download only a subset of splits in https://github.com/huggingface/datasets/pull/6832 but no one has been continuing this work so far. This would be a welcomed contribution though\n\nAlso note that loading script are often unoptimized, and we recommend using datasets in standard formats like Parquet instead.\n\nBtw there is a CLI tool to convert a loading script to parquet:\n\n```\ndatasets-cli convert_to_parquet <dataset-name> --trust_remote_code\n```", "Closing in favor of #6832 " ]
2025-05-06T14:43:38Z
2025-05-07T14:53:45Z
2025-05-07T14:53:44Z
NONE
null
null
null
null
### Describe the bug `datasets` downloads and generates all splits, even though a single split is requested. [This](https://huggingface.co/datasets/jordiae/exebench) is the dataset in question. It uses a loading script. I am not 100% sure that this is a bug, because maybe with loading scripts `datasets` must actually process all the splits? But I thought loading scripts were designed to avoid this. ### Steps to reproduce the bug See [this notebook](https://colab.research.google.com/drive/14kcXp_hgcdj-kIzK0bCG6taE-CLZPVvq?usp=sharing) Or: ```python from datasets import load_dataset dataset = load_dataset('jordiae/exebench', split='test_synth', trust_remote_code=True) ``` ### Expected behavior I expected only the `test_synth` split to be downloaded and processed. ### Environment info - `datasets` version: 3.5.1 - Platform: Linux-6.1.123+-x86_64-with-glibc2.35 - Python version: 3.11.12 - `huggingface_hub` version: 0.30.2 - PyArrow version: 18.1.0 - Pandas version: 2.2.2 - `fsspec` version: 2025.3.0
{ "avatar_url": "https://avatars.githubusercontent.com/u/50171988?v=4", "events_url": "https://api.github.com/users/sei-eschwartz/events{/privacy}", "followers_url": "https://api.github.com/users/sei-eschwartz/followers", "following_url": "https://api.github.com/users/sei-eschwartz/following{/other_user}", "gists_url": "https://api.github.com/users/sei-eschwartz/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/sei-eschwartz", "id": 50171988, "login": "sei-eschwartz", "node_id": "MDQ6VXNlcjUwMTcxOTg4", "organizations_url": "https://api.github.com/users/sei-eschwartz/orgs", "received_events_url": "https://api.github.com/users/sei-eschwartz/received_events", "repos_url": "https://api.github.com/users/sei-eschwartz/repos", "site_admin": false, "starred_url": "https://api.github.com/users/sei-eschwartz/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sei-eschwartz/subscriptions", "type": "User", "url": "https://api.github.com/users/sei-eschwartz", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7554/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7554/timeline
null
duplicate
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7551
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7551/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7551/comments
https://api.github.com/repos/huggingface/datasets/issues/7551/events
https://github.com/huggingface/datasets/issues/7551
3,038,114,928
I_kwDODunzps61FfRw
7,551
Issue with offline mode and partial dataset cached
{ "avatar_url": "https://avatars.githubusercontent.com/u/353245?v=4", "events_url": "https://api.github.com/users/nrv/events{/privacy}", "followers_url": "https://api.github.com/users/nrv/followers", "following_url": "https://api.github.com/users/nrv/following{/other_user}", "gists_url": "https://api.github.com/users/nrv/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/nrv", "id": 353245, "login": "nrv", "node_id": "MDQ6VXNlcjM1MzI0NQ==", "organizations_url": "https://api.github.com/users/nrv/orgs", "received_events_url": "https://api.github.com/users/nrv/received_events", "repos_url": "https://api.github.com/users/nrv/repos", "site_admin": false, "starred_url": "https://api.github.com/users/nrv/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/nrv/subscriptions", "type": "User", "url": "https://api.github.com/users/nrv", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "It seems the problem comes from builder.py / create_config_id()\n\nOn the first call, when the cache is empty we have\n```\nconfig_kwargs = {'data_files': {'train': ['hf://datasets/uonlp/CulturaX@6a8734bc69fefcbb7735f4f9250f43e4cd7a442e/fr/fr_part_00038.parquet']}}\n```\nleading to config_id beeing 'default-2935e8cdcc21c613'\n\nthen, on the second call, \n```\nconfig_kwargs = {'data_files': 'fr/fr_part_00038.parquet'}\n```\nthus explaining why the hash is not the same, despite having the same parameter when calling load_dataset : data_files=\"fr/fr_part_00038.parquet\"", "Same behavior with version 3.5.1", "Same issue when loading `google/IndicGenBench_flores_in` with `dataset==2.21.0` and `dataset==3.6.0` .", "\n\n\n> It seems the problem comes from builder.py / create_config_id()\n> \n> On the first call, when the cache is empty we have\n> \n> ```\n> config_kwargs = {'data_files': {'train': ['hf://datasets/uonlp/CulturaX@6a8734bc69fefcbb7735f4f9250f43e4cd7a442e/fr/fr_part_00038.parquet']}}\n> ```\n> \n> leading to config_id beeing 'default-2935e8cdcc21c613'\n> \n> then, on the second call,\n> \n> ```\n> config_kwargs = {'data_files': 'fr/fr_part_00038.parquet'}\n> ```\n> \n> thus explaining why the hash is not the same, despite having the same parameter when calling load_dataset : data_files=\"fr/fr_part_00038.parquet\"\n\n\nI have identified that the issue indeed lies in the `data_files` within `config_kwargs`. \nThe format and prefix of `data_files` differ depending on whether `HF_HUB_OFFLINE` is set, leading to different final `config_id` values. \nWhen I use other datasets without passing the `data_files` parameter, this issue does not occur.\n\nA possible solution might be to standardize the formatting of `data_files` within the `create_config_id` function." ]
2025-05-04T16:49:37Z
2025-05-13T03:18:43Z
null
NONE
null
null
null
null
### Describe the bug Hi, a issue related to #4760 here when loading a single file from a dataset, unable to access it in offline mode afterwards ### Steps to reproduce the bug ```python import os # os.environ["HF_HUB_OFFLINE"] = "1" os.environ["HF_TOKEN"] = "xxxxxxxxxxxxxx" import datasets dataset_name = "uonlp/CulturaX" data_files = "fr/fr_part_00038.parquet" ds = datasets.load_dataset(dataset_name, split='train', data_files=data_files) print(f"Dataset loaded : {ds}") ``` Once the file has been cached, I rerun with the HF_HUB_OFFLINE activated an get this error : ``` ValueError: Couldn't find cache for uonlp/CulturaX for config 'default-1e725f978350254e' Available configs in the cache: ['default-2935e8cdcc21c613'] ``` ### Expected behavior Should be able to access the previously cached files ### Environment info - `datasets` version: 3.2.0 - Platform: Linux-5.4.0-215-generic-x86_64-with-glibc2.31 - Python version: 3.12.0 - `huggingface_hub` version: 0.27.0 - PyArrow version: 19.0.0 - Pandas version: 2.2.2 - `fsspec` version: 2024.3.1
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7551/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7551/timeline
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7549
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7549/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7549/comments
https://api.github.com/repos/huggingface/datasets/issues/7549/events
https://github.com/huggingface/datasets/issues/7549
3,036,272,015
I_kwDODunzps60-dWP
7,549
TypeError: Couldn't cast array of type string to null on webdataset format dataset
{ "avatar_url": "https://avatars.githubusercontent.com/u/117186571?v=4", "events_url": "https://api.github.com/users/narugo1992/events{/privacy}", "followers_url": "https://api.github.com/users/narugo1992/followers", "following_url": "https://api.github.com/users/narugo1992/following{/other_user}", "gists_url": "https://api.github.com/users/narugo1992/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/narugo1992", "id": 117186571, "login": "narugo1992", "node_id": "U_kgDOBvwgCw", "organizations_url": "https://api.github.com/users/narugo1992/orgs", "received_events_url": "https://api.github.com/users/narugo1992/received_events", "repos_url": "https://api.github.com/users/narugo1992/repos", "site_admin": false, "starred_url": "https://api.github.com/users/narugo1992/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/narugo1992/subscriptions", "type": "User", "url": "https://api.github.com/users/narugo1992", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "seems to get fixed by explicitly adding `dataset_infos.json` like this\n\n```json\n{\n \"default\": {\n \"description\": \"Image dataset with tags and ratings\",\n \"citation\": \"\",\n \"homepage\": \"\",\n \"license\": \"\",\n \"features\": {\n \"image\": {\n \"dtype\": \"image\",\n \"_type\": \"Image\"\n },\n \"json\": {\n \"id\": {\n \"dtype\": \"int32\",\n \"_type\": \"Value\"\n },\n \"width\": {\n \"dtype\": \"int32\",\n \"_type\": \"Value\"\n },\n \"height\": {\n \"dtype\": \"int32\",\n \"_type\": \"Value\"\n },\n \"rating\": {\n \"feature\": {\n \"dtype\": \"string\",\n \"_type\": \"Value\"\n },\n \"_type\": \"Sequence\"\n },\n \"general_tags\": {\n \"feature\": {\n \"dtype\": \"string\",\n \"_type\": \"Value\"\n },\n \"_type\": \"Sequence\"\n },\n \"character_tags\": {\n \"feature\": {\n \"dtype\": \"string\",\n \"_type\": \"Value\"\n },\n \"_type\": \"Sequence\"\n }\n }\n },\n \"builder_name\": \"webdataset\",\n \"config_name\": \"default\",\n \"version\": {\n \"version_str\": \"1.0.0\",\n \"description\": null,\n \"major\": 1,\n \"minor\": 0,\n \"patch\": 0\n }\n }\n}\n\n```\n\nwill close this issue if no further issues found" ]
2025-05-02T15:18:07Z
2025-05-02T15:37:05Z
null
NONE
null
null
null
null
### Describe the bug ```python from datasets import load_dataset dataset = load_dataset("animetimm/danbooru-wdtagger-v4-w640-ws-30k") ``` got ``` File "/home/ubuntu/miniconda3/lib/python3.10/site-packages/datasets/arrow_writer.py", line 626, in write_batch arrays.append(pa.array(typed_sequence)) File "pyarrow/array.pxi", line 255, in pyarrow.lib.array File "pyarrow/array.pxi", line 117, in pyarrow.lib._handle_arrow_array_protocol File "/home/ubuntu/miniconda3/lib/python3.10/site-packages/datasets/arrow_writer.py", line 258, in __arrow_array__ out = cast_array_to_feature( File "/home/ubuntu/miniconda3/lib/python3.10/site-packages/datasets/table.py", line 1798, in wrapper return func(array, *args, **kwargs) File "/home/ubuntu/miniconda3/lib/python3.10/site-packages/datasets/table.py", line 2006, in cast_array_to_feature arrays = [ File "/home/ubuntu/miniconda3/lib/python3.10/site-packages/datasets/table.py", line 2007, in <listcomp> _c(array.field(name) if name in array_fields else null_array, subfeature) File "/home/ubuntu/miniconda3/lib/python3.10/site-packages/datasets/table.py", line 1798, in wrapper return func(array, *args, **kwargs) File "/home/ubuntu/miniconda3/lib/python3.10/site-packages/datasets/table.py", line 2066, in cast_array_to_feature casted_array_values = _c(array.values, feature.feature) File "/home/ubuntu/miniconda3/lib/python3.10/site-packages/datasets/table.py", line 1798, in wrapper return func(array, *args, **kwargs) File "/home/ubuntu/miniconda3/lib/python3.10/site-packages/datasets/table.py", line 2103, in cast_array_to_feature return array_cast( File "/home/ubuntu/miniconda3/lib/python3.10/site-packages/datasets/table.py", line 1798, in wrapper return func(array, *args, **kwargs) File "/home/ubuntu/miniconda3/lib/python3.10/site-packages/datasets/table.py", line 1949, in array_cast raise TypeError(f"Couldn't cast array of type {_short_str(array.type)} to {_short_str(pa_type)}") TypeError: Couldn't cast array of type string to null The above exception was the direct cause of the following exception: Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/home/ubuntu/miniconda3/lib/python3.10/site-packages/datasets/load.py", line 2084, in load_dataset builder_instance.download_and_prepare( File "/home/ubuntu/miniconda3/lib/python3.10/site-packages/datasets/builder.py", line 925, in download_and_prepare self._download_and_prepare( File "/home/ubuntu/miniconda3/lib/python3.10/site-packages/datasets/builder.py", line 1649, in _download_and_prepare super()._download_and_prepare( File "/home/ubuntu/miniconda3/lib/python3.10/site-packages/datasets/builder.py", line 1001, in _download_and_prepare self._prepare_split(split_generator, **prepare_split_kwargs) File "/home/ubuntu/miniconda3/lib/python3.10/site-packages/datasets/builder.py", line 1487, in _prepare_split for job_id, done, content in self._prepare_split_single( File "/home/ubuntu/miniconda3/lib/python3.10/site-packages/datasets/builder.py", line 1644, in _prepare_split_single raise DatasetGenerationError("An error occurred while generating the dataset") from e datasets.exceptions.DatasetGenerationError: An error occurred while generating the dataset ``` `datasets==3.5.1` whats wrong its inner json structure is like ```yaml features: - name: "image" dtype: "image" - name: "json.id" dtype: "string" - name: "json.width" dtype: "int32" - name: "json.height" dtype: "int32" - name: "json.rating" sequence: dtype: "string" - name: "json.general_tags" sequence: dtype: "string" - name: "json.character_tags" sequence: dtype: "string" ``` i'm 100% sure all the jsons satisfies the abovementioned format. ### Steps to reproduce the bug ```python from datasets import load_dataset dataset = load_dataset("animetimm/danbooru-wdtagger-v4-w640-ws-30k") ``` ### Expected behavior load the dataset successfully, with the abovementioned json format and webp images ### Environment info Copy-and-paste the text below in your GitHub issue. - `datasets` version: 3.5.1 - Platform: Linux-6.8.0-52-generic-x86_64-with-glibc2.35 - Python version: 3.10.16 - `huggingface_hub` version: 0.30.2 - PyArrow version: 20.0.0 - Pandas version: 2.2.3 - `fsspec` version: 2025.3.0
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7549/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7549/timeline
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7548
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7548/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7548/comments
https://api.github.com/repos/huggingface/datasets/issues/7548/events
https://github.com/huggingface/datasets/issues/7548
3,035,568,851
I_kwDODunzps607xrT
7,548
Python 3.13t (free threads) Compat
{ "avatar_url": "https://avatars.githubusercontent.com/u/417764?v=4", "events_url": "https://api.github.com/users/Qubitium/events{/privacy}", "followers_url": "https://api.github.com/users/Qubitium/followers", "following_url": "https://api.github.com/users/Qubitium/following{/other_user}", "gists_url": "https://api.github.com/users/Qubitium/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/Qubitium", "id": 417764, "login": "Qubitium", "node_id": "MDQ6VXNlcjQxNzc2NA==", "organizations_url": "https://api.github.com/users/Qubitium/orgs", "received_events_url": "https://api.github.com/users/Qubitium/received_events", "repos_url": "https://api.github.com/users/Qubitium/repos", "site_admin": false, "starred_url": "https://api.github.com/users/Qubitium/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Qubitium/subscriptions", "type": "User", "url": "https://api.github.com/users/Qubitium", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "Update: `datasets` use `aiohttp` for data streaming and from what I understand data streaming is useful for large datasets that do not fit in memory and/or multi-modal datasets like image/audio where you only what the actual binary bits to fed in as needed. \n\nHowever, there are also many cases where aiohttp will never be used. Text datasets that are not huge, relative to machine spec, and non-multi-modal datasets. \n\nGetting `aiohttp` fixed for `free threading` appeals to be a large task that is not going to be get done in a quick manner. It may be faster to make `aiohttp` optional and not forced build. Otherwise, testing python 3.13t is going to be a painful install. \n\nI have created a fork/branch that temp disables aiohttp import so non-streaming usage of datasets can be tested under python 3.13.t:\n\nhttps://github.com/Qubitium/datasets/tree/disable-aiohttp-depend", "We are mostly relying on `huggingface_hub` which uses `requests` to stream files from Hugging Face, so maybe we can move aiohttp to optional dependencies now. Would it solve your issue ? Btw what do you think of `datasets` in the free-threading setting ?", "> We are mostly relying on `huggingface_hub` which uses `requests` to stream files from Hugging Face, so maybe we can move aiohttp to optional dependencies now. Would it solve your issue ? Btw what do you think of `datasets` in the free-threading setting ?\n\nI am testing transformers + dataset (simple text dataset usage) + GPTQModel for quantization and there were no issues encountered with python 3.13t but my test-case is the base-bare minimal test-case since dataset is not sharded, fully in-memory, text-only, small, not used for training. \n\nOn the technical side, dataset is almost always 100% read-only so there should be zero locking issues but I have not checked the dataset internals so there may be cases where streaming, sharding, and/or cases where datset memory/states are updated needs a per dataset `threading.lock`. \n\nSo yes, making `aiohttp` optional will definitely solve my issue. There is also a companion (datasets and tokenizers usually go hand-in-hand) issue with `Tokenizers` as well but that's simple enough with package version update: https://github.com/huggingface/tokenizers/pull/1774\n", "Ok I see ! Anyway feel free to edit the setup.py to move aiohttp to optional (tests) dependencies and open a PR, we can run the CI to see if it's ok as a change", "actually there is https://github.com/huggingface/datasets/pull/7294/ already, let's see if we can merge it", "wouldn't it be the good reason to switch to `httpx`? 😄 (would require slightly more work, short term agree with https://github.com/huggingface/datasets/issues/7548#issuecomment-2854405923)", "I made `aiohttp` optional in `datasets` 3.6.0 :)\n\n`datasets` doesn't use it directly anyway, it's only used when someone wants to download files from HTTP URLs outside of HF" ]
2025-05-02T09:20:09Z
2025-05-12T15:11:32Z
null
NONE
null
null
null
null
### Describe the bug Cannot install `datasets` under `python 3.13t` due to dependency on `aiohttp` and aiohttp cannot be built for free-threading python. The `free threading` support issue in `aiothttp` is active since August 2024! Ouch. https://github.com/aio-libs/aiohttp/issues/8796#issue-2475941784 `pip install dataset` ```bash (vm313t) root@gpu-base:~/GPTQModel# pip install datasets WARNING: Retrying (Retry(total=4, connect=None, read=None, redirect=None, status=None)) after connection broken by 'ReadTimeoutError("HTTPSConnectionPool(host='pypi.org', port=443): Read timed out. (read timeout=15)")': /simple/datasets/ Collecting datasets Using cached datasets-3.5.1-py3-none-any.whl.metadata (19 kB) Requirement already satisfied: filelock in /root/vm313t/lib/python3.13t/site-packages (from datasets) (3.18.0) Requirement already satisfied: numpy>=1.17 in /root/vm313t/lib/python3.13t/site-packages (from datasets) (2.2.5) Collecting pyarrow>=15.0.0 (from datasets) Using cached pyarrow-20.0.0-cp313-cp313t-manylinux_2_28_x86_64.whl.metadata (3.3 kB) Collecting dill<0.3.9,>=0.3.0 (from datasets) Using cached dill-0.3.8-py3-none-any.whl.metadata (10 kB) Collecting pandas (from datasets) Using cached pandas-2.2.3-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (89 kB) Requirement already satisfied: requests>=2.32.2 in /root/vm313t/lib/python3.13t/site-packages (from datasets) (2.32.3) Requirement already satisfied: tqdm>=4.66.3 in /root/vm313t/lib/python3.13t/site-packages (from datasets) (4.67.1) Collecting xxhash (from datasets) Using cached xxhash-3.5.0-cp313-cp313t-linux_x86_64.whl Collecting multiprocess<0.70.17 (from datasets) Using cached multiprocess-0.70.16-py312-none-any.whl.metadata (7.2 kB) Collecting fsspec<=2025.3.0,>=2023.1.0 (from fsspec[http]<=2025.3.0,>=2023.1.0->datasets) Using cached fsspec-2025.3.0-py3-none-any.whl.metadata (11 kB) Collecting aiohttp (from datasets) Using cached aiohttp-3.11.18.tar.gz (7.7 MB) Installing build dependencies ... done Getting requirements to build wheel ... done Preparing metadata (pyproject.toml) ... done Requirement already satisfied: huggingface-hub>=0.24.0 in /root/vm313t/lib/python3.13t/site-packages (from datasets) (0.30.2) Requirement already satisfied: packaging in /root/vm313t/lib/python3.13t/site-packages (from datasets) (25.0) Requirement already satisfied: pyyaml>=5.1 in /root/vm313t/lib/python3.13t/site-packages (from datasets) (6.0.2) Collecting aiohappyeyeballs>=2.3.0 (from aiohttp->datasets) Using cached aiohappyeyeballs-2.6.1-py3-none-any.whl.metadata (5.9 kB) Collecting aiosignal>=1.1.2 (from aiohttp->datasets) Using cached aiosignal-1.3.2-py2.py3-none-any.whl.metadata (3.8 kB) Collecting attrs>=17.3.0 (from aiohttp->datasets) Using cached attrs-25.3.0-py3-none-any.whl.metadata (10 kB) Collecting frozenlist>=1.1.1 (from aiohttp->datasets) Using cached frozenlist-1.6.0-cp313-cp313t-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (16 kB) Collecting multidict<7.0,>=4.5 (from aiohttp->datasets) Using cached multidict-6.4.3-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (5.3 kB) Collecting propcache>=0.2.0 (from aiohttp->datasets) Using cached propcache-0.3.1-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (10 kB) Collecting yarl<2.0,>=1.17.0 (from aiohttp->datasets) Using cached yarl-1.20.0-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (72 kB) Requirement already satisfied: idna>=2.0 in /root/vm313t/lib/python3.13t/site-packages (from yarl<2.0,>=1.17.0->aiohttp->datasets) (3.10) Requirement already satisfied: typing-extensions>=3.7.4.3 in /root/vm313t/lib/python3.13t/site-packages (from huggingface-hub>=0.24.0->datasets) (4.13.2) Requirement already satisfied: charset-normalizer<4,>=2 in /root/vm313t/lib/python3.13t/site-packages (from requests>=2.32.2->datasets) (3.4.1) Requirement already satisfied: urllib3<3,>=1.21.1 in /root/vm313t/lib/python3.13t/site-packages (from requests>=2.32.2->datasets) (2.4.0) Requirement already satisfied: certifi>=2017.4.17 in /root/vm313t/lib/python3.13t/site-packages (from requests>=2.32.2->datasets) (2025.4.26) Collecting python-dateutil>=2.8.2 (from pandas->datasets) Using cached python_dateutil-2.9.0.post0-py2.py3-none-any.whl.metadata (8.4 kB) Collecting pytz>=2020.1 (from pandas->datasets) Using cached pytz-2025.2-py2.py3-none-any.whl.metadata (22 kB) Collecting tzdata>=2022.7 (from pandas->datasets) Using cached tzdata-2025.2-py2.py3-none-any.whl.metadata (1.4 kB) Collecting six>=1.5 (from python-dateutil>=2.8.2->pandas->datasets) Using cached six-1.17.0-py2.py3-none-any.whl.metadata (1.7 kB) Using cached datasets-3.5.1-py3-none-any.whl (491 kB) Using cached dill-0.3.8-py3-none-any.whl (116 kB) Using cached fsspec-2025.3.0-py3-none-any.whl (193 kB) Using cached multiprocess-0.70.16-py312-none-any.whl (146 kB) Using cached multidict-6.4.3-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (220 kB) Using cached yarl-1.20.0-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (404 kB) Using cached aiohappyeyeballs-2.6.1-py3-none-any.whl (15 kB) Using cached aiosignal-1.3.2-py2.py3-none-any.whl (7.6 kB) Using cached attrs-25.3.0-py3-none-any.whl (63 kB) Using cached frozenlist-1.6.0-cp313-cp313t-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (385 kB) Using cached propcache-0.3.1-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (282 kB) Using cached pyarrow-20.0.0-cp313-cp313t-manylinux_2_28_x86_64.whl (42.2 MB) Using cached pandas-2.2.3-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (11.9 MB) Using cached python_dateutil-2.9.0.post0-py2.py3-none-any.whl (229 kB) Using cached pytz-2025.2-py2.py3-none-any.whl (509 kB) Using cached six-1.17.0-py2.py3-none-any.whl (11 kB) Using cached tzdata-2025.2-py2.py3-none-any.whl (347 kB) Building wheels for collected packages: aiohttp Building wheel for aiohttp (pyproject.toml) ... error error: subprocess-exited-with-error × Building wheel for aiohttp (pyproject.toml) did not run successfully. │ exit code: 1 ╰─> [156 lines of output] ********************* * Accelerated build * ********************* /tmp/pip-build-env-wjqi8_7w/overlay/lib/python3.13t/site-packages/setuptools/dist.py:759: SetuptoolsDeprecationWarning: License classifiers are deprecated. !! ******************************************************************************** Please consider removing the following classifiers in favor of a SPDX license expression: License :: OSI Approved :: Apache Software License See https://packaging.python.org/en/latest/guides/writing-pyproject-toml/#license for details. ******************************************************************************** !! self._finalize_license_expression() running bdist_wheel running build running build_py creating build/lib.linux-x86_64-cpython-313t/aiohttp copying aiohttp/typedefs.py -> build/lib.linux-x86_64-cpython-313t/aiohttp copying aiohttp/http_parser.py -> build/lib.linux-x86_64-cpython-313t/aiohttp copying aiohttp/client_reqrep.py -> build/lib.linux-x86_64-cpython-313t/aiohttp copying aiohttp/client_ws.py -> build/lib.linux-x86_64-cpython-313t/aiohttp copying aiohttp/web_app.py -> build/lib.linux-x86_64-cpython-313t/aiohttp copying aiohttp/http_websocket.py -> build/lib.linux-x86_64-cpython-313t/aiohttp copying aiohttp/resolver.py -> build/lib.linux-x86_64-cpython-313t/aiohttp copying aiohttp/tracing.py -> build/lib.linux-x86_64-cpython-313t/aiohttp copying aiohttp/http_writer.py -> build/lib.linux-x86_64-cpython-313t/aiohttp copying aiohttp/http_exceptions.py -> build/lib.linux-x86_64-cpython-313t/aiohttp copying aiohttp/log.py -> build/lib.linux-x86_64-cpython-313t/aiohttp copying aiohttp/__init__.py -> build/lib.linux-x86_64-cpython-313t/aiohttp copying aiohttp/web_runner.py -> build/lib.linux-x86_64-cpython-313t/aiohttp copying aiohttp/worker.py -> build/lib.linux-x86_64-cpython-313t/aiohttp copying aiohttp/connector.py -> build/lib.linux-x86_64-cpython-313t/aiohttp copying aiohttp/client_exceptions.py -> build/lib.linux-x86_64-cpython-313t/aiohttp copying aiohttp/web_middlewares.py -> build/lib.linux-x86_64-cpython-313t/aiohttp copying aiohttp/web.py -> build/lib.linux-x86_64-cpython-313t/aiohttp copying aiohttp/tcp_helpers.py -> build/lib.linux-x86_64-cpython-313t/aiohttp copying aiohttp/web_response.py -> build/lib.linux-x86_64-cpython-313t/aiohttp copying aiohttp/web_server.py -> build/lib.linux-x86_64-cpython-313t/aiohttp copying aiohttp/web_request.py -> build/lib.linux-x86_64-cpython-313t/aiohttp copying aiohttp/web_urldispatcher.py -> build/lib.linux-x86_64-cpython-313t/aiohttp copying aiohttp/web_exceptions.py -> build/lib.linux-x86_64-cpython-313t/aiohttp copying aiohttp/formdata.py -> build/lib.linux-x86_64-cpython-313t/aiohttp copying aiohttp/streams.py -> build/lib.linux-x86_64-cpython-313t/aiohttp copying aiohttp/multipart.py -> build/lib.linux-x86_64-cpython-313t/aiohttp copying aiohttp/web_routedef.py -> build/lib.linux-x86_64-cpython-313t/aiohttp copying aiohttp/web_ws.py -> build/lib.linux-x86_64-cpython-313t/aiohttp copying aiohttp/payload.py -> build/lib.linux-x86_64-cpython-313t/aiohttp copying aiohttp/client_proto.py -> build/lib.linux-x86_64-cpython-313t/aiohttp copying aiohttp/web_log.py -> build/lib.linux-x86_64-cpython-313t/aiohttp copying aiohttp/base_protocol.py -> build/lib.linux-x86_64-cpython-313t/aiohttp copying aiohttp/payload_streamer.py -> build/lib.linux-x86_64-cpython-313t/aiohttp copying aiohttp/http.py -> build/lib.linux-x86_64-cpython-313t/aiohttp copying aiohttp/web_fileresponse.py -> build/lib.linux-x86_64-cpython-313t/aiohttp copying aiohttp/test_utils.py -> build/lib.linux-x86_64-cpython-313t/aiohttp copying aiohttp/client.py -> build/lib.linux-x86_64-cpython-313t/aiohttp copying aiohttp/cookiejar.py -> build/lib.linux-x86_64-cpython-313t/aiohttp copying aiohttp/compression_utils.py -> build/lib.linux-x86_64-cpython-313t/aiohttp copying aiohttp/hdrs.py -> build/lib.linux-x86_64-cpython-313t/aiohttp copying aiohttp/helpers.py -> build/lib.linux-x86_64-cpython-313t/aiohttp copying aiohttp/pytest_plugin.py -> build/lib.linux-x86_64-cpython-313t/aiohttp copying aiohttp/web_protocol.py -> build/lib.linux-x86_64-cpython-313t/aiohttp copying aiohttp/abc.py -> build/lib.linux-x86_64-cpython-313t/aiohttp creating build/lib.linux-x86_64-cpython-313t/aiohttp/_websocket copying aiohttp/_websocket/__init__.py -> build/lib.linux-x86_64-cpython-313t/aiohttp/_websocket copying aiohttp/_websocket/writer.py -> build/lib.linux-x86_64-cpython-313t/aiohttp/_websocket copying aiohttp/_websocket/models.py -> build/lib.linux-x86_64-cpython-313t/aiohttp/_websocket copying aiohttp/_websocket/reader.py -> build/lib.linux-x86_64-cpython-313t/aiohttp/_websocket copying aiohttp/_websocket/reader_c.py -> build/lib.linux-x86_64-cpython-313t/aiohttp/_websocket copying aiohttp/_websocket/helpers.py -> build/lib.linux-x86_64-cpython-313t/aiohttp/_websocket copying aiohttp/_websocket/reader_py.py -> build/lib.linux-x86_64-cpython-313t/aiohttp/_websocket running egg_info writing aiohttp.egg-info/PKG-INFO writing dependency_links to aiohttp.egg-info/dependency_links.txt writing requirements to aiohttp.egg-info/requires.txt writing top-level names to aiohttp.egg-info/top_level.txt reading manifest file 'aiohttp.egg-info/SOURCES.txt' reading manifest template 'MANIFEST.in' warning: no files found matching 'aiohttp' anywhere in distribution warning: no files found matching '*.pyi' anywhere in distribution warning: no previously-included files matching '*.pyc' found anywhere in distribution warning: no previously-included files matching '*.pyd' found anywhere in distribution warning: no previously-included files matching '*.so' found anywhere in distribution warning: no previously-included files matching '*.lib' found anywhere in distribution warning: no previously-included files matching '*.dll' found anywhere in distribution warning: no previously-included files matching '*.a' found anywhere in distribution warning: no previously-included files matching '*.obj' found anywhere in distribution warning: no previously-included files found matching 'aiohttp/*.html' no previously-included directories found matching 'docs/_build' adding license file 'LICENSE.txt' writing manifest file 'aiohttp.egg-info/SOURCES.txt' copying aiohttp/_cparser.pxd -> build/lib.linux-x86_64-cpython-313t/aiohttp copying aiohttp/_find_header.pxd -> build/lib.linux-x86_64-cpython-313t/aiohttp copying aiohttp/_headers.pxi -> build/lib.linux-x86_64-cpython-313t/aiohttp copying aiohttp/_http_parser.pyx -> build/lib.linux-x86_64-cpython-313t/aiohttp copying aiohttp/_http_writer.pyx -> build/lib.linux-x86_64-cpython-313t/aiohttp copying aiohttp/py.typed -> build/lib.linux-x86_64-cpython-313t/aiohttp creating build/lib.linux-x86_64-cpython-313t/aiohttp/.hash copying aiohttp/.hash/_cparser.pxd.hash -> build/lib.linux-x86_64-cpython-313t/aiohttp/.hash copying aiohttp/.hash/_find_header.pxd.hash -> build/lib.linux-x86_64-cpython-313t/aiohttp/.hash copying aiohttp/.hash/_http_parser.pyx.hash -> build/lib.linux-x86_64-cpython-313t/aiohttp/.hash copying aiohttp/.hash/_http_writer.pyx.hash -> build/lib.linux-x86_64-cpython-313t/aiohttp/.hash copying aiohttp/.hash/hdrs.py.hash -> build/lib.linux-x86_64-cpython-313t/aiohttp/.hash copying aiohttp/_websocket/mask.pxd -> build/lib.linux-x86_64-cpython-313t/aiohttp/_websocket copying aiohttp/_websocket/mask.pyx -> build/lib.linux-x86_64-cpython-313t/aiohttp/_websocket copying aiohttp/_websocket/reader_c.pxd -> build/lib.linux-x86_64-cpython-313t/aiohttp/_websocket creating build/lib.linux-x86_64-cpython-313t/aiohttp/_websocket/.hash copying aiohttp/_websocket/.hash/mask.pxd.hash -> build/lib.linux-x86_64-cpython-313t/aiohttp/_websocket/.hash copying aiohttp/_websocket/.hash/mask.pyx.hash -> build/lib.linux-x86_64-cpython-313t/aiohttp/_websocket/.hash copying aiohttp/_websocket/.hash/reader_c.pxd.hash -> build/lib.linux-x86_64-cpython-313t/aiohttp/_websocket/.hash running build_ext building 'aiohttp._websocket.mask' extension creating build/temp.linux-x86_64-cpython-313t/aiohttp/_websocket x86_64-linux-gnu-gcc -fno-strict-overflow -Wsign-compare -DNDEBUG -g -O2 -Wall -g -fno-omit-frame-pointer -mno-omit-leaf-frame-pointer -fstack-protector-strong -fstack-clash-protection -Wformat -Werror=format-security -fcf-protection -fPIC -I/root/vm313t/include -I/usr/include/python3.13t -c aiohttp/_websocket/mask.c -o build/temp.linux-x86_64-cpython-313t/aiohttp/_websocket/mask.o aiohttp/_websocket/mask.c:1864:80: error: unknown type name ‘__pyx_vectorcallfunc’; did you mean ‘vectorcallfunc’? 1864 | static CYTHON_INLINE PyObject *__Pyx_PyVectorcall_FastCallDict(PyObject *func, __pyx_vectorcallfunc vc, PyObject *const *args, size_t nargs, PyObject *kw); | ^~~~~~~~~~~~~~~~~~~~ | vectorcallfunc aiohttp/_websocket/mask.c: In function ‘__pyx_f_7aiohttp_10_websocket_4mask__websocket_mask_cython’: aiohttp/_websocket/mask.c:2905:3: warning: ‘Py_OptimizeFlag’ is deprecated [-Wdeprecated-declarations] 2905 | if (unlikely(__pyx_assertions_enabled())) { | ^~ In file included from /usr/include/python3.13t/Python.h:76, from aiohttp/_websocket/mask.c:16: /usr/include/python3.13t/cpython/pydebug.h:13:37: note: declared here 13 | Py_DEPRECATED(3.12) PyAPI_DATA(int) Py_OptimizeFlag; | ^~~~~~~~~~~~~~~ aiohttp/_websocket/mask.c: At top level: aiohttp/_websocket/mask.c:4846:69: error: unknown type name ‘__pyx_vectorcallfunc’; did you mean ‘vectorcallfunc’? 4846 | static PyObject *__Pyx_PyVectorcall_FastCallDict_kw(PyObject *func, __pyx_vectorcallfunc vc, PyObject *const *args, size_t nargs, PyObject *kw) | ^~~~~~~~~~~~~~~~~~~~ | vectorcallfunc aiohttp/_websocket/mask.c:4891:80: error: unknown type name ‘__pyx_vectorcallfunc’; did you mean ‘vectorcallfunc’? 4891 | static CYTHON_INLINE PyObject *__Pyx_PyVectorcall_FastCallDict(PyObject *func, __pyx_vectorcallfunc vc, PyObject *const *args, size_t nargs, PyObject *kw) | ^~~~~~~~~~~~~~~~~~~~ | vectorcallfunc aiohttp/_websocket/mask.c: In function ‘__Pyx_CyFunction_CallAsMethod’: aiohttp/_websocket/mask.c:5580:6: error: unknown type name ‘__pyx_vectorcallfunc’; did you mean ‘vectorcallfunc’? 5580 | __pyx_vectorcallfunc vc = __Pyx_CyFunction_func_vectorcall(cyfunc); | ^~~~~~~~~~~~~~~~~~~~ | vectorcallfunc aiohttp/_websocket/mask.c:1954:45: warning: initialization of ‘int’ from ‘vectorcallfunc’ {aka ‘struct _object * (*)(struct _object *, struct _object * const*, long unsigned int, struct _object *)’} makes integer from pointer without a cast [-Wint-conversion] 1954 | #define __Pyx_CyFunction_func_vectorcall(f) (((PyCFunctionObject*)f)->vectorcall) | ^ aiohttp/_websocket/mask.c:5580:32: note: in expansion of macro ‘__Pyx_CyFunction_func_vectorcall’ 5580 | __pyx_vectorcallfunc vc = __Pyx_CyFunction_func_vectorcall(cyfunc); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ aiohttp/_websocket/mask.c:5583:16: warning: implicit declaration of function ‘__Pyx_PyVectorcall_FastCallDict’ [-Wimplicit-function-declaration] 5583 | return __Pyx_PyVectorcall_FastCallDict(func, vc, &PyTuple_GET_ITEM(args, 0), (size_t)PyTuple_GET_SIZE(args), kw); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ aiohttp/_websocket/mask.c:5583:16: warning: returning ‘int’ from a function with return type ‘PyObject *’ {aka ‘struct _object *’} makes pointer from integer without a cast [-Wint-conversion] 5583 | return __Pyx_PyVectorcall_FastCallDict(func, vc, &PyTuple_GET_ITEM(args, 0), (size_t)PyTuple_GET_SIZE(args), kw); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ error: command '/usr/bin/x86_64-linux-gnu-gcc' failed with exit code 1 [end of output] note: This error originates from a subprocess, and is likely not a problem with pip. ERROR: Failed building wheel for aiohttp Failed to build aiohttp ERROR: Failed to build installable wheels for some pyproject.toml based projects (aiohttp) ``` ### Steps to reproduce the bug See above ### Expected behavior Install ### Environment info Ubuntu 24.04
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7548/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7548/timeline
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7546
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7546/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7546/comments
https://api.github.com/repos/huggingface/datasets/issues/7546/events
https://github.com/huggingface/datasets/issues/7546
3,034,018,298
I_kwDODunzps6013H6
7,546
Large memory use when loading large datasets to a ZFS pool
{ "avatar_url": "https://avatars.githubusercontent.com/u/6875946?v=4", "events_url": "https://api.github.com/users/FredHaa/events{/privacy}", "followers_url": "https://api.github.com/users/FredHaa/followers", "following_url": "https://api.github.com/users/FredHaa/following{/other_user}", "gists_url": "https://api.github.com/users/FredHaa/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/FredHaa", "id": 6875946, "login": "FredHaa", "node_id": "MDQ6VXNlcjY4NzU5NDY=", "organizations_url": "https://api.github.com/users/FredHaa/orgs", "received_events_url": "https://api.github.com/users/FredHaa/received_events", "repos_url": "https://api.github.com/users/FredHaa/repos", "site_admin": false, "starred_url": "https://api.github.com/users/FredHaa/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/FredHaa/subscriptions", "type": "User", "url": "https://api.github.com/users/FredHaa", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "Hi ! datasets are memory mapped from disk, so they don't fill out your RAM. Not sure what's the source of your memory issue.\n\nWhat kind of system are you using ? and what kind of disk ?", "Well, the fact of the matter is that my RAM is getting filled out by running the given example, as shown in [this video](https://streamable.com/usb0ql).\n\nMy system is a GPU server running Ubuntu. The disk is a SATA SSD attached to the server using a backplane. It is formatted with ZFS, mounted in /cache, and my HF_HOME is set to /cache/hf\n\nI really need this fixed, so I am more than willing to test out various suggestions you might have, or write a PR if we can figure out what is going on.", "I'm not super familiar with ZFS, but it looks like it loads the data in memory when the files are memory mapped, which is an issue.\n\nMaybe it's a caching mechanism ? Since `datasets` accesses every memory mapped file to read a small part (the metadata of the arrow record batches), maybe ZFS brings the whole files in memory for quicker subsequent reads. This is an antipattern when it comes to lazy loading datasets of that size though", "This is the answer.\n\nI tried changing my HF_HOME to an NFS share, and no RAM is then consumed loading the dataset.\n\nI will try to see if I can find a way to configure the ZFS pool to not cache the files (disabling the ARC/primary cache didn't work), and if I do write the solution in this issue. If I can't I guess I have to reformat my cache drive." ]
2025-05-01T14:43:47Z
2025-05-13T13:30:09Z
2025-05-13T13:29:53Z
NONE
null
null
null
null
### Describe the bug When I load large parquet based datasets from the hub like `MLCommons/peoples_speech` using `load_dataset`, all my memory (500GB) is used and isn't released after loading, meaning that the process is terminated by the kernel if I try to load an additional dataset. This makes it impossible to train models using multiple large datasets. ### Steps to reproduce the bug `uv run --with datasets==3.5.1 python` ```python from datasets import load_dataset load_dataset('MLCommons/peoples_speech', 'clean') load_dataset('mozilla-foundation/common_voice_17_0', 'en') ``` ### Expected behavior I would expect that a lot less than 500GB of RAM would be required to load the dataset, or at least that the RAM usage would be cleared as soon as the dataset is loaded (and thus reside as a memory mapped file) such that other datasets can be loaded. ### Environment info I am currently using the latest datasets==3.5.1 but I have had the same problem with multiple other versions.
{ "avatar_url": "https://avatars.githubusercontent.com/u/6875946?v=4", "events_url": "https://api.github.com/users/FredHaa/events{/privacy}", "followers_url": "https://api.github.com/users/FredHaa/followers", "following_url": "https://api.github.com/users/FredHaa/following{/other_user}", "gists_url": "https://api.github.com/users/FredHaa/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/FredHaa", "id": 6875946, "login": "FredHaa", "node_id": "MDQ6VXNlcjY4NzU5NDY=", "organizations_url": "https://api.github.com/users/FredHaa/orgs", "received_events_url": "https://api.github.com/users/FredHaa/received_events", "repos_url": "https://api.github.com/users/FredHaa/repos", "site_admin": false, "starred_url": "https://api.github.com/users/FredHaa/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/FredHaa/subscriptions", "type": "User", "url": "https://api.github.com/users/FredHaa", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7546/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7546/timeline
null
completed
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7545
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7545/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7545/comments
https://api.github.com/repos/huggingface/datasets/issues/7545/events
https://github.com/huggingface/datasets/issues/7545
3,031,617,547
I_kwDODunzps60stAL
7,545
Networked Pull Through Cache
{ "avatar_url": "https://avatars.githubusercontent.com/u/8764173?v=4", "events_url": "https://api.github.com/users/wrmedford/events{/privacy}", "followers_url": "https://api.github.com/users/wrmedford/followers", "following_url": "https://api.github.com/users/wrmedford/following{/other_user}", "gists_url": "https://api.github.com/users/wrmedford/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/wrmedford", "id": 8764173, "login": "wrmedford", "node_id": "MDQ6VXNlcjg3NjQxNzM=", "organizations_url": "https://api.github.com/users/wrmedford/orgs", "received_events_url": "https://api.github.com/users/wrmedford/received_events", "repos_url": "https://api.github.com/users/wrmedford/repos", "site_admin": false, "starred_url": "https://api.github.com/users/wrmedford/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/wrmedford/subscriptions", "type": "User", "url": "https://api.github.com/users/wrmedford", "user_view_type": "public" }
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
open
false
null
[]
null
[]
2025-04-30T15:16:33Z
2025-04-30T15:16:33Z
null
NONE
null
null
null
null
### Feature request Introduce a HF_DATASET_CACHE_NETWORK_LOCATION configuration (e.g. an environment variable) together with a companion network cache service. Enable a three-tier cache lookup for datasets: 1. Local on-disk cache 2. Configurable network cache proxy 3. Official Hugging Face Hub ### Motivation - Distributed training & ephemeral jobs: In high-performance or containerized clusters, relying solely on a local disk cache either becomes a streaming bottleneck or incurs a heavy cold-start penalty as each job must re-download datasets. - Traffic & cost reduction: A pull-through network cache lets multiple consumers share a common cache layer, reducing duplicate downloads from the Hub and lowering egress costs. - Better streaming adoption: By offloading repeat dataset pulls to a locally managed cache proxy, streaming workloads can achieve higher throughput and more predictable latency. - Proven pattern: Similar proxy-cache solutions (e.g. Harbor’s Proxy Cache for Docker images) have demonstrated reliability and performance at scale: https://goharbor.io/docs/2.1.0/administration/configure-proxy-cache/ ### Your contribution I’m happy to draft the initial PR for adding HF_DATASET_CACHE_NETWORK_LOCATION support in datasets and sketch out a minimal cache-service prototype. I have limited bandwidth so I would be looking for collaborators if anyone else is interested.
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7545/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7545/timeline
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7543
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7543/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7543/comments
https://api.github.com/repos/huggingface/datasets/issues/7543/events
https://github.com/huggingface/datasets/issues/7543
3,026,867,706
I_kwDODunzps60alX6
7,543
The memory-disk mapping failure issue of the map function(resolved, but there are some suggestions.)
{ "avatar_url": "https://avatars.githubusercontent.com/u/76415358?v=4", "events_url": "https://api.github.com/users/jxma20/events{/privacy}", "followers_url": "https://api.github.com/users/jxma20/followers", "following_url": "https://api.github.com/users/jxma20/following{/other_user}", "gists_url": "https://api.github.com/users/jxma20/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/jxma20", "id": 76415358, "login": "jxma20", "node_id": "MDQ6VXNlcjc2NDE1MzU4", "organizations_url": "https://api.github.com/users/jxma20/orgs", "received_events_url": "https://api.github.com/users/jxma20/received_events", "repos_url": "https://api.github.com/users/jxma20/repos", "site_admin": false, "starred_url": "https://api.github.com/users/jxma20/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/jxma20/subscriptions", "type": "User", "url": "https://api.github.com/users/jxma20", "user_view_type": "public" }
[]
closed
false
null
[]
null
[]
2025-04-29T03:04:59Z
2025-04-30T02:22:17Z
2025-04-30T02:22:17Z
NONE
null
null
null
null
### Describe the bug ## bug When the map function processes a large dataset, it temporarily stores the data in a cache file on the disk. After the data is stored, the memory occupied by it is released. Therefore, when using the map function to process a large-scale dataset, only a dataset space of the size of `writer_batch_size` will be occupied in memory. However, I found that the map function does not actually reduce memory usage when I used it. At first, I thought there was a bug in the program, causing a memory leak—meaning the memory was not released after the data was stored in the cache. But later, I used a Linux command to check for recently modified files during program execution and found that no new files were created or modified. This indicates that the program did not store the dataset in the disk cache. ## bug solved After modifying the parameters of the map function multiple times, I discovered the `cache_file_name` parameter. By changing it, the cache file can be stored in the specified directory. After making this change, I noticed that the cache file appeared. Initially, I found this quite incredible, but then I wondered if the cache file might have failed to be stored in a certain folder. This could be related to the fact that I don't have root privileges. So, I delved into the source code of the map function to find out where the cache file would be stored by default. Eventually, I found the function `def _get_cache_file_path(self, fingerprint):`, which automatically generates the storage path for the cache file. The output was as follows: `/tmp/hf_datasets-j5qco9ug/cache-f2830487643b9cc2.arrow`. My hypothesis was confirmed: the lack of root privileges indeed prevented the cache file from being stored, which in turn prevented the release of memory. Therefore, changing the storage location to a folder where I have write access resolved the issue. ### Steps to reproduce the bug my code `train_data = train_data.map(process_fun, remove_columns=['image_name', 'question_type', 'concern', 'question', 'candidate_answers', 'answer'])` ### Expected behavior Although my bug has been resolved, it still took me nearly a week to search for relevant information and debug the program. However, if a warning or error message about insufficient cache file write permissions could be provided during program execution, I might have been able to identify the cause more quickly. Therefore, I hope this aspect can be improved. I am documenting this bug here so that friends who encounter similar issues can solve their problems in a timely manner. ### Environment info python: 3.10.15 datasets: 3.5.0
{ "avatar_url": "https://avatars.githubusercontent.com/u/76415358?v=4", "events_url": "https://api.github.com/users/jxma20/events{/privacy}", "followers_url": "https://api.github.com/users/jxma20/followers", "following_url": "https://api.github.com/users/jxma20/following{/other_user}", "gists_url": "https://api.github.com/users/jxma20/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/jxma20", "id": 76415358, "login": "jxma20", "node_id": "MDQ6VXNlcjc2NDE1MzU4", "organizations_url": "https://api.github.com/users/jxma20/orgs", "received_events_url": "https://api.github.com/users/jxma20/received_events", "repos_url": "https://api.github.com/users/jxma20/repos", "site_admin": false, "starred_url": "https://api.github.com/users/jxma20/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/jxma20/subscriptions", "type": "User", "url": "https://api.github.com/users/jxma20", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7543/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7543/timeline
null
completed
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7538
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7538/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7538/comments
https://api.github.com/repos/huggingface/datasets/issues/7538/events
https://github.com/huggingface/datasets/issues/7538
3,023,280,056
I_kwDODunzps60M5e4
7,538
`IterableDataset` drops samples when resuming from a checkpoint
{ "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko", "user_view_type": "public" }
[ { "color": "d73a4a", "default": true, "description": "Something isn't working", "id": 1935892857, "name": "bug", "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug" } ]
closed
false
null
[]
null
[ "Thanks for reporting ! I fixed the issue using RebatchedArrowExamplesIterable before the formatted iterable" ]
2025-04-27T19:34:49Z
2025-05-06T14:04:05Z
2025-05-06T14:03:42Z
COLLABORATOR
null
null
null
null
When resuming from a checkpoint, `IterableDataset` will drop samples if `num_shards % world_size == 0` and the underlying example supports `iter_arrow` and needs to be formatted. In that case, the `FormattedExamplesIterable` fetches a batch of samples from the child iterable's `iter_arrow` and yields them one by one (after formatting). However, the child increments the `shard_example_idx` counter (in its `iter_arrow`) before returning the batch for the whole batch size, which leads to a portion of samples being skipped if the iteration (of the parent iterable) is stopped mid-batch. Perhaps one way to avoid this would be by signalling the child iterable which samples (within the chunk) are processed by the parent and which are not, so that it can adjust the `shard_example_idx` counter accordingly. This would also mean the chunk needs to be sliced when resuming, but this is straightforward to implement. The following is a minimal reproducer of the bug: ```python from datasets import Dataset from datasets.distributed import split_dataset_by_node ds = Dataset.from_dict({"n": list(range(24))}) ds = ds.to_iterable_dataset(num_shards=4) world_size = 4 rank = 0 ds_rank = split_dataset_by_node(ds, rank, world_size) it = iter(ds_rank) examples = [] for idx, example in enumerate(it): examples.append(example) if idx == 2: state_dict = ds_rank.state_dict() break ds_rank.load_state_dict(state_dict) it_resumed = iter(ds_rank) examples_resumed = examples[:] for example in it: examples.append(example) for example in it_resumed: examples_resumed.append(example) print("ORIGINAL ITER EXAMPLES:", examples) print("RESUMED ITER EXAMPLES:", examples_resumed) ```
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
{ "+1": 1, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/7538/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7538/timeline
null
completed
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7537
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7537/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7537/comments
https://api.github.com/repos/huggingface/datasets/issues/7537/events
https://github.com/huggingface/datasets/issues/7537
3,018,792,966
I_kwDODunzps6z7yAG
7,537
`datasets.map(..., num_proc=4)` multi-processing fails
{ "avatar_url": "https://avatars.githubusercontent.com/u/24477841?v=4", "events_url": "https://api.github.com/users/faaany/events{/privacy}", "followers_url": "https://api.github.com/users/faaany/followers", "following_url": "https://api.github.com/users/faaany/following{/other_user}", "gists_url": "https://api.github.com/users/faaany/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/faaany", "id": 24477841, "login": "faaany", "node_id": "MDQ6VXNlcjI0NDc3ODQx", "organizations_url": "https://api.github.com/users/faaany/orgs", "received_events_url": "https://api.github.com/users/faaany/received_events", "repos_url": "https://api.github.com/users/faaany/repos", "site_admin": false, "starred_url": "https://api.github.com/users/faaany/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/faaany/subscriptions", "type": "User", "url": "https://api.github.com/users/faaany", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "related: https://github.com/huggingface/datasets/issues/7510\n\nwe need to do more tests to see if latest `dill` is deterministic" ]
2025-04-25T01:53:47Z
2025-05-06T13:12:08Z
null
NONE
null
null
null
null
The following code fails in python 3.11+ ```python tokenized_datasets = datasets.map(tokenize_function, batched=True, num_proc=4, remove_columns=["text"]) ``` Error log: ```bash Traceback (most recent call last): File "/usr/local/lib/python3.12/dist-packages/multiprocess/process.py", line 315, in _bootstrap self.run() File "/usr/local/lib/python3.12/dist-packages/multiprocess/process.py", line 108, in run self._target(*self._args, **self._kwargs) File "/usr/local/lib/python3.12/dist-packages/multiprocess/pool.py", line 114, in worker task = get() ^^^^^ File "/usr/local/lib/python3.12/dist-packages/multiprocess/queues.py", line 371, in get return _ForkingPickler.loads(res) ^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/dist-packages/dill/_dill.py", line 327, in loads return load(file, ignore, **kwds) ^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/dist-packages/dill/_dill.py", line 313, in load return Unpickler(file, ignore=ignore, **kwds).load() ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/dist-packages/dill/_dill.py", line 525, in load obj = StockUnpickler.load(self) ^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/dist-packages/dill/_dill.py", line 659, in _create_code if len(args) == 16: return CodeType(*args) ^^^^^^^^^^^^^^^ TypeError: code() argument 13 must be str, not int ``` After upgrading dill to the latest 0.4.0 with "pip install --upgrade dill", it can pass. So it seems that there is a compatibility issue between dill 0.3.4 and python 3.11+, because python 3.10 works fine. Is the dill deterministic issue mentioned in https://github.com/huggingface/datasets/blob/main/setup.py#L117) still valid? Any plan to unpin?
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7537/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7537/timeline
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7536
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7536/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7536/comments
https://api.github.com/repos/huggingface/datasets/issues/7536/events
https://github.com/huggingface/datasets/issues/7536
3,018,425,549
I_kwDODunzps6z6YTN
7,536
[Errno 13] Permission denied: on `.incomplete` file
{ "avatar_url": "https://avatars.githubusercontent.com/u/1282383?v=4", "events_url": "https://api.github.com/users/ryan-clancy/events{/privacy}", "followers_url": "https://api.github.com/users/ryan-clancy/followers", "following_url": "https://api.github.com/users/ryan-clancy/following{/other_user}", "gists_url": "https://api.github.com/users/ryan-clancy/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/ryan-clancy", "id": 1282383, "login": "ryan-clancy", "node_id": "MDQ6VXNlcjEyODIzODM=", "organizations_url": "https://api.github.com/users/ryan-clancy/orgs", "received_events_url": "https://api.github.com/users/ryan-clancy/received_events", "repos_url": "https://api.github.com/users/ryan-clancy/repos", "site_admin": false, "starred_url": "https://api.github.com/users/ryan-clancy/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/ryan-clancy/subscriptions", "type": "User", "url": "https://api.github.com/users/ryan-clancy", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "It must be an issue with umask being used by multiple threads indeed. Maybe we can try to make a thread safe function to apply the umask (using filelock for example)", "> It must be an issue with umask being used by multiple threads indeed. Maybe we can try to make a thread safe function to apply the umask (using filelock for example)\n\n@lhoestq is this something which can go in a 3.5.1 release?", "Yes for sure", "@lhoestq - can you take a look at https://github.com/huggingface/datasets/pull/7547/?" ]
2025-04-24T20:52:45Z
2025-05-06T13:05:01Z
2025-05-06T13:05:01Z
CONTRIBUTOR
null
null
null
null
### Describe the bug When downloading a dataset, we frequently hit the below Permission Denied error. This looks to happen (at least) across datasets in HF, S3, and GCS. It looks like the `temp_file` being passed [here](https://github.com/huggingface/datasets/blob/main/src/datasets/utils/file_utils.py#L412) can sometimes be created with `000` permissions leading to the permission denied error (the user running the code is still the owner of the file). Deleting that particular file and re-running the code with 0 changes will usually succeed. Is there some race condition happening with the [umask](https://github.com/huggingface/datasets/blob/main/src/datasets/utils/file_utils.py#L416), which is process global, and the [file creation](https://github.com/huggingface/datasets/blob/main/src/datasets/utils/file_utils.py#L404)? ``` _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ .venv/lib/python3.12/site-packages/datasets/load.py:2084: in load_dataset builder_instance.download_and_prepare( .venv/lib/python3.12/site-packages/datasets/builder.py:925: in download_and_prepare self._download_and_prepare( .venv/lib/python3.12/site-packages/datasets/builder.py:1649: in _download_and_prepare super()._download_and_prepare( .venv/lib/python3.12/site-packages/datasets/builder.py:979: in _download_and_prepare split_generators = self._split_generators(dl_manager, **split_generators_kwargs) .venv/lib/python3.12/site-packages/datasets/packaged_modules/folder_based_builder/folder_based_builder.py:120: in _split_generators downloaded_files = dl_manager.download(files) .venv/lib/python3.12/site-packages/datasets/download/download_manager.py:159: in download downloaded_path_or_paths = map_nested( .venv/lib/python3.12/site-packages/datasets/utils/py_utils.py:514: in map_nested _single_map_nested((function, obj, batched, batch_size, types, None, True, None)) .venv/lib/python3.12/site-packages/datasets/utils/py_utils.py:382: in _single_map_nested return [mapped_item for batch in iter_batched(data_struct, batch_size) for mapped_item in function(batch)] .venv/lib/python3.12/site-packages/datasets/download/download_manager.py:206: in _download_batched return thread_map( .venv/lib/python3.12/site-packages/tqdm/contrib/concurrent.py:69: in thread_map return _executor_map(ThreadPoolExecutor, fn, *iterables, **tqdm_kwargs) .venv/lib/python3.12/site-packages/tqdm/contrib/concurrent.py:51: in _executor_map return list(tqdm_class(ex.map(fn, *iterables, chunksize=chunksize), **kwargs)) .venv/lib/python3.12/site-packages/tqdm/std.py:1181: in __iter__ for obj in iterable: ../../../_tool/Python/3.12.10/x64/lib/python3.12/concurrent/futures/_base.py:619: in result_iterator yield _result_or_cancel(fs.pop()) ../../../_tool/Python/3.12.10/x64/lib/python3.12/concurrent/futures/_base.py:317: in _result_or_cancel return fut.result(timeout) ../../../_tool/Python/3.12.10/x64/lib/python3.12/concurrent/futures/_base.py:449: in result return self.__get_result() ../../../_tool/Python/3.12.10/x64/lib/python3.12/concurrent/futures/_base.py:401: in __get_result raise self._exception ../../../_tool/Python/3.12.10/x64/lib/python3.12/concurrent/futures/thread.py:59: in run result = self.fn(*self.args, **self.kwargs) .venv/lib/python3.12/site-packages/datasets/download/download_manager.py:229: in _download_single out = cached_path(url_or_filename, download_config=download_config) .venv/lib/python3.12/site-packages/datasets/utils/file_utils.py:206: in cached_path output_path = get_from_cache( .venv/lib/python3.12/site-packages/datasets/utils/file_utils.py:412: in get_from_cache fsspec_get(url, temp_file, storage_options=storage_options, desc=download_desc, disable_tqdm=disable_tqdm) .venv/lib/python3.12/site-packages/datasets/utils/file_utils.py:331: in fsspec_get fs.get_file(path, temp_file.name, callback=callback) .venv/lib/python3.12/site-packages/fsspec/asyn.py:118: in wrapper return sync(self.loop, func, *args, **kwargs) .venv/lib/python3.12/site-packages/fsspec/asyn.py:103: in sync raise return_result .venv/lib/python3.12/site-packages/fsspec/asyn.py:56: in _runner result[0] = await coro _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ self = <s3fs.core.S3FileSystem object at 0x7f27c18b2e70> rpath = '<my-bucket>/<my-prefix>/img_1.jpg' lpath = '/home/runner/_work/_temp/hf_cache/downloads/6c97983efa4e24e534557724655df8247a0bd04326cdfc4a95b638c11e78222d.incomplete' callback = <datasets.utils.file_utils.TqdmCallback object at 0x7f27c00cdbe0> version_id = None, kwargs = {} _open_file = <function S3FileSystem._get_file.<locals>._open_file at 0x7f27628d1120> body = <StreamingBody at 0x7f276344fa80 for ClientResponse at 0x7f27c015fce0> content_length = 521923, failed_reads = 0, bytes_read = 0 async def _get_file( self, rpath, lpath, callback=_DEFAULT_CALLBACK, version_id=None, **kwargs ): if os.path.isdir(lpath): return bucket, key, vers = self.split_path(rpath) async def _open_file(range: int): kw = self.req_kw.copy() if range: kw["Range"] = f"bytes={range}-" resp = await self._call_s3( "get_object", Bucket=bucket, Key=key, **version_id_kw(version_id or vers), **kw, ) return resp["Body"], resp.get("ContentLength", None) body, content_length = await _open_file(range=0) callback.set_size(content_length) failed_reads = 0 bytes_read = 0 try: > with open(lpath, "wb") as f0: E PermissionError: [Errno 13] Permission denied: '/home/runner/_work/_temp/hf_cache/downloads/6c97983efa4e24e534557724655df8247a0bd04326cdfc4a95b638c11e78222d.incomplete' .venv/lib/python3.12/site-packages/s3fs/core.py:1355: PermissionError ``` ### Steps to reproduce the bug I believe this is a race condition and cannot reliably re-produce it, but it happens fairly frequently in our GitHub Actions tests and can also be re-produced (with lesser frequency) on cloud VMs. ### Expected behavior The dataset loads properly with no permission denied error. ### Environment info - `datasets` version: 3.5.0 - Platform: Linux-5.10.0-34-cloud-amd64-x86_64-with-glibc2.31 - Python version: 3.12.10 - `huggingface_hub` version: 0.30.2 - PyArrow version: 19.0.1 - Pandas version: 2.2.3 - `fsspec` version: 2024.12.0
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7536/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7536/timeline
null
completed
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7534
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7534/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7534/comments
https://api.github.com/repos/huggingface/datasets/issues/7534/events
https://github.com/huggingface/datasets/issues/7534
3,017,259,407
I_kwDODunzps6z17mP
7,534
TensorFlow RaggedTensor Support (batch-level)
{ "avatar_url": "https://avatars.githubusercontent.com/u/7490199?v=4", "events_url": "https://api.github.com/users/Lundez/events{/privacy}", "followers_url": "https://api.github.com/users/Lundez/followers", "following_url": "https://api.github.com/users/Lundez/following{/other_user}", "gists_url": "https://api.github.com/users/Lundez/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/Lundez", "id": 7490199, "login": "Lundez", "node_id": "MDQ6VXNlcjc0OTAxOTk=", "organizations_url": "https://api.github.com/users/Lundez/orgs", "received_events_url": "https://api.github.com/users/Lundez/received_events", "repos_url": "https://api.github.com/users/Lundez/repos", "site_admin": false, "starred_url": "https://api.github.com/users/Lundez/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Lundez/subscriptions", "type": "User", "url": "https://api.github.com/users/Lundez", "user_view_type": "public" }
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
open
false
null
[]
null
[ "Keras doesn't support other inputs other than tf.data.Dataset objects ? it's a bit painful to have to support and maintain this kind of integration\n\nIs there a way to use a `datasets.Dataset` with outputs formatted as tensors / ragged tensors instead ? like in https://huggingface.co/docs/datasets/use_with_tensorflow#dataset-format", "I'll give it a try when I get the time. But quite sure I already tested the `with_format` approach.\n\nKeras when using TF as backend converts the datasets into `tf.data.Dataset`, much like you do.", "Hi @Lundez! Thanks for raising this — very valid point, especially for Object Detection use-cases.\n\nYou're right that np_get_batch currently enforces numpy batching, which breaks RaggedTensor support due to its inability to handle nested structures. This likely needs a redesign to allow TensorFlow-native batching in specific formats.\n\nBefore diving into a code change though, could you confirm:\n\nDoes `.with_format(\"tensorflow\")` (without batching) return a `tf.data.Dataset` that works if batching is deferred to `model.fit()`?\n\nHave you tried something like:\n\n```python\ntf_dataset = dataset.with_format(\"tensorflow\").to_tf_dataset(\n columns=[\"image\", \"labels\"],\n label_cols=None,\n batch_size=None # No batching here\n)\nmodel.fit(tf_dataset.batch(BATCH_SIZE)) # Use RaggedTensor batching here\n```\n\nIf this works, it might be worth updating the documentation rather than changing batching logic inside datasets itself.\n\nThat said, happy to explore changes if batching needs to be supported natively for RaggedTensor. Just flagging that it’d require some careful design due to existing numpy assumptions.", "Hi, we've had to move on for now. \n\nWe have actually also moved to dense tensors to make it possible to xla complie the training. \n\nBut I'll check when I'm back from vacation which is far into the future. \n\nThanks" ]
2025-04-24T13:14:52Z
2025-06-30T17:03:39Z
null
NONE
null
null
null
null
### Feature request Hi, Currently datasets does not support RaggedTensor output on batch-level. When building a Object Detection Dataset (with TensorFlow) I need to enable RaggedTensors as that's how BBoxes & classes are expected from the Keras Model POV. Currently there's a error thrown saying that "Nested Data is not supported". It'd be very helpful if this was fixed! :) ### Motivation Enabling Object Detection pipelines for TensorFlow. ### Your contribution With guidance I'd happily help making the PR. The current implementation with DataCollator and later enforcing `np.array` is the problematic part (at the end of `np_get_batch` in `tf_utils.py`). As `numpy` don't support "Raggednes"
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7534/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7534/timeline
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7531
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7531/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7531/comments
https://api.github.com/repos/huggingface/datasets/issues/7531/events
https://github.com/huggingface/datasets/issues/7531
3,008,914,887
I_kwDODunzps6zWGXH
7,531
Deepspeed reward training hangs at end of training with Dataset.from_list
{ "avatar_url": "https://avatars.githubusercontent.com/u/60710414?v=4", "events_url": "https://api.github.com/users/Matt00n/events{/privacy}", "followers_url": "https://api.github.com/users/Matt00n/followers", "following_url": "https://api.github.com/users/Matt00n/following{/other_user}", "gists_url": "https://api.github.com/users/Matt00n/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/Matt00n", "id": 60710414, "login": "Matt00n", "node_id": "MDQ6VXNlcjYwNzEwNDE0", "organizations_url": "https://api.github.com/users/Matt00n/orgs", "received_events_url": "https://api.github.com/users/Matt00n/received_events", "repos_url": "https://api.github.com/users/Matt00n/repos", "site_admin": false, "starred_url": "https://api.github.com/users/Matt00n/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Matt00n/subscriptions", "type": "User", "url": "https://api.github.com/users/Matt00n", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "Hi ! How big is the dataset ? if you load it using `from_list`, the dataset lives in memory and has to be copied to every gpu process, which can be slow.\n\nIt's fasted if you load it from JSON files from disk, because in that case the dataset in converted to Arrow and loaded from disk using memory mapping. Memory mapping allows to quickly reload the dataset in other processes.\n\nMaybe we can change `from_list` and other methods to always use the disk though, instead of loading in memory, WDYT ?", "Thanks for raising this! As lhoestq mentioned, the root cause seems to be that `Dataset.from_list()` creates an in-memory dataset, which causes issues with DeepSpeed across multiple GPUs due to the cost of copying that memory to all processes.\n\nUsing `load_dataset(\"json\", ...)` works because Hugging Face datasets then convert the data to Apache Arrow and use **memory mapping**, which avoids this copying overhead.\n\nPossible improvement could be to add an option like `use_disk=True` to `Dataset.from_list()` to allow users to write to Arrow + memory-map the dataset, enabling compatibility with multi-process settings like DeepSpeed, while keeping the current fast behavior by default.\n\nWould love to hear if this direction sounds acceptable before attempting a PR.\n" ]
2025-04-21T17:29:20Z
2025-06-29T06:20:45Z
null
NONE
null
null
null
null
There seems to be a weird interaction between Deepspeed, the Dataset.from_list method and trl's RewardTrainer. On a multi-GPU setup (10 A100s), training always hangs at the very end of training until it times out. The training itself works fine until the end of training and running the same script with Deepspeed on a single GPU works without hangig. The issue persisted across a wide range of Deepspeed configs and training arguments. The issue went away when storing the exact same dataset as a JSON and using `dataset = load_dataset("json", ...)`. Here is my training script: ```python import pickle import os import random import warnings import torch from datasets import load_dataset, Dataset from transformers import AutoModelForSequenceClassification, AutoTokenizer from trl import RewardConfig, RewardTrainer, ModelConfig ####################################### Reward model ################################################# # Explicitly set arguments model_name_or_path = "Qwen/Qwen2.5-1.5B" output_dir = "Qwen2-0.5B-Reward-LoRA" per_device_train_batch_size = 2 num_train_epochs = 5 gradient_checkpointing = True learning_rate = 1.0e-4 logging_steps = 25 eval_strategy = "steps" eval_steps = 50 max_length = 2048 torch_dtype = "auto" trust_remote_code = False model_args = ModelConfig( model_name_or_path=model_name_or_path, model_revision=None, trust_remote_code=trust_remote_code, torch_dtype=torch_dtype, lora_task_type="SEQ_CLS", # Make sure task type is seq_cls ) training_args = RewardConfig( output_dir=output_dir, per_device_train_batch_size=per_device_train_batch_size, num_train_epochs=num_train_epochs, gradient_checkpointing=gradient_checkpointing, learning_rate=learning_rate, logging_steps=logging_steps, eval_strategy=eval_strategy, eval_steps=eval_steps, max_length=max_length, gradient_checkpointing_kwargs=dict(use_reentrant=False), center_rewards_coefficient = 0.01, fp16=False, bf16=True, save_strategy="no", dataloader_num_workers=0, # deepspeed="./configs/deepspeed_config.json", ) ################ # Model & Tokenizer ################ model_kwargs = dict( revision=model_args.model_revision, use_cache=False if training_args.gradient_checkpointing else True, torch_dtype=model_args.torch_dtype, ) tokenizer = AutoTokenizer.from_pretrained( model_args.model_name_or_path, use_fast=True ) model = AutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path, num_labels=1, trust_remote_code=model_args.trust_remote_code, **model_kwargs ) # Align padding tokens between tokenizer and model model.config.pad_token_id = tokenizer.pad_token_id # If post-training a base model, use ChatML as the default template if tokenizer.chat_template is None: model, tokenizer = setup_chat_format(model, tokenizer) if model_args.use_peft and model_args.lora_task_type != "SEQ_CLS": warnings.warn( "You are using a `task_type` that is different than `SEQ_CLS` for PEFT. This will lead to silent bugs" " Make sure to pass --lora_task_type SEQ_CLS when using this script with PEFT.", UserWarning, ) ############## # Load dataset ############## with open('./prefs.pkl', 'rb') as fh: loaded_data = pickle.load(fh) random.shuffle(loaded_data) dataset = [] for a_wins, a, b in loaded_data: if a_wins == 0: a, b = b, a dataset.append({'chosen': a, 'rejected': b}) dataset = Dataset.from_list(dataset) # Split the dataset into training and evaluation sets train_eval_split = dataset.train_test_split(test_size=0.15, shuffle=True, seed=42) # Access the training and evaluation datasets train_dataset = train_eval_split['train'] eval_dataset = train_eval_split['test'] ########## # Training ########## trainer = RewardTrainer( model=model, processing_class=tokenizer, args=training_args, train_dataset=train_dataset, eval_dataset=eval_dataset, ) trainer.train() ``` Replacing `dataset = Dataset.from_list(dataset)` with ```python with open('./prefs.json', 'w') as fh: json.dump(dataset, fh) dataset = load_dataset("json", data_files="./prefs.json", split='train') ``` resolves the issue.
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7531/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7531/timeline
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7530
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7530/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7530/comments
https://api.github.com/repos/huggingface/datasets/issues/7530/events
https://github.com/huggingface/datasets/issues/7530
3,007,452,499
I_kwDODunzps6zQhVT
7,530
How to solve "Spaces stuck in Building" problems
{ "avatar_url": "https://avatars.githubusercontent.com/u/10137?v=4", "events_url": "https://api.github.com/users/ghost/events{/privacy}", "followers_url": "https://api.github.com/users/ghost/followers", "following_url": "https://api.github.com/users/ghost/following{/other_user}", "gists_url": "https://api.github.com/users/ghost/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/ghost", "id": 10137, "login": "ghost", "node_id": "MDQ6VXNlcjEwMTM3", "organizations_url": "https://api.github.com/users/ghost/orgs", "received_events_url": "https://api.github.com/users/ghost/received_events", "repos_url": "https://api.github.com/users/ghost/repos", "site_admin": false, "starred_url": "https://api.github.com/users/ghost/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/ghost/subscriptions", "type": "User", "url": "https://api.github.com/users/ghost", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "I'm facing the same issue—Space stuck in \"Building\" even after restart and Factory rebuild. Any fix?\n", "> I'm facing the same issue—Space stuck in \"Building\" even after restart and Factory rebuild. Any fix?\n\nAlso see https://github.com/huggingface/huggingface_hub/issues/3019", "I'm facing the same issue. The build fails with the same error, and restarting won't help. Is there a fix or ETA? " ]
2025-04-21T03:08:38Z
2025-04-22T07:49:52Z
2025-04-22T07:49:52Z
NONE
null
null
null
null
### Describe the bug Public spaces may stuck in Building after restarting, error log as follows: build error Unexpected job error ERROR: failed to push spaces-registry.huggingface.tech/spaces/*:cpu-*-*: unexpected status from HEAD request to https://spaces-registry.huggingface.tech/v2/spaces/*/manifests/cpu-*-*: 401 Unauthorized ### Steps to reproduce the bug Restart space / Factory rebuild cannot avoid it ### Expected behavior Fix this problem ### Environment info no requirements.txt can still happen python gradio spaces
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7530/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7530/timeline
null
completed
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7529
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7529/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7529/comments
https://api.github.com/repos/huggingface/datasets/issues/7529/events
https://github.com/huggingface/datasets/issues/7529
3,007,118,969
I_kwDODunzps6zPP55
7,529
audio folder builder cannot detect custom split name
{ "avatar_url": "https://avatars.githubusercontent.com/u/37548991?v=4", "events_url": "https://api.github.com/users/phineas-pta/events{/privacy}", "followers_url": "https://api.github.com/users/phineas-pta/followers", "following_url": "https://api.github.com/users/phineas-pta/following{/other_user}", "gists_url": "https://api.github.com/users/phineas-pta/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/phineas-pta", "id": 37548991, "login": "phineas-pta", "node_id": "MDQ6VXNlcjM3NTQ4OTkx", "organizations_url": "https://api.github.com/users/phineas-pta/orgs", "received_events_url": "https://api.github.com/users/phineas-pta/received_events", "repos_url": "https://api.github.com/users/phineas-pta/repos", "site_admin": false, "starred_url": "https://api.github.com/users/phineas-pta/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/phineas-pta/subscriptions", "type": "User", "url": "https://api.github.com/users/phineas-pta", "user_view_type": "public" }
[]
open
false
null
[]
null
[]
2025-04-20T16:53:21Z
2025-04-20T16:53:21Z
null
NONE
null
null
null
null
### Describe the bug when using audio folder builder (`load_dataset("audiofolder", data_dir="/path/to/folder")`), it cannot detect custom split name other than train/validation/test ### Steps to reproduce the bug i have the following folder structure ``` my_dataset/ ├── train/ │ ├── lorem.wav │ ├── … │ └── metadata.csv ├── test/ │ ├── ipsum.wav │ ├── … │ └── metadata.csv ├── validation/ │ ├── dolor.wav │ ├── … │ └── metadata.csv └── custom/ ├── sit.wav ├── … └── metadata.csv ``` using `ds = load_dataset("audiofolder", data_dir="/path/to/my_dataset")` ### Expected behavior i got `ds` with only 3 splits train/validation/test, whenever i rename train/validation/test folder it also disappear if i re-create `ds` ### Environment info - `datasets` version: 3.5.0 - Platform: Windows-11-10.0.26100-SP0 - Python version: 3.12.8 - `huggingface_hub` version: 0.30.2 - PyArrow version: 18.1.0 - Pandas version: 2.2.3 - `fsspec` version: 2024.9.0
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7529/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7529/timeline
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7528
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7528/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7528/comments
https://api.github.com/repos/huggingface/datasets/issues/7528/events
https://github.com/huggingface/datasets/issues/7528
3,006,433,485
I_kwDODunzps6zMojN
7,528
Data Studio Error: Convert JSONL incorrectly
{ "avatar_url": "https://avatars.githubusercontent.com/u/144962041?v=4", "events_url": "https://api.github.com/users/zxccade/events{/privacy}", "followers_url": "https://api.github.com/users/zxccade/followers", "following_url": "https://api.github.com/users/zxccade/following{/other_user}", "gists_url": "https://api.github.com/users/zxccade/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/zxccade", "id": 144962041, "login": "zxccade", "node_id": "U_kgDOCKPx-Q", "organizations_url": "https://api.github.com/users/zxccade/orgs", "received_events_url": "https://api.github.com/users/zxccade/received_events", "repos_url": "https://api.github.com/users/zxccade/repos", "site_admin": false, "starred_url": "https://api.github.com/users/zxccade/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/zxccade/subscriptions", "type": "User", "url": "https://api.github.com/users/zxccade", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "Hi ! Your JSONL file is incompatible with Arrow / Parquet. Indeed in Arrow / Parquet every dict should have the same keys, while in your dataset the bboxes have varying keys.\n\nThis causes the Data Studio to treat the bboxes as if each row was missing the keys from other rows.\n\nFeel free to take a look at the docs on object segmentation to see how to format a dataset with bboxes: https://huggingface.co/docs/datasets/object_detection" ]
2025-04-19T13:21:44Z
2025-05-06T13:18:38Z
null
NONE
null
null
null
null
### Describe the bug Hi there, I uploaded a dataset here https://huggingface.co/datasets/V-STaR-Bench/V-STaR, but I found that Data Studio incorrectly convert the "bboxes" value for the whole dataset. Therefore, anyone who downloaded the dataset via the API would get the wrong "bboxes" value in the data file. Could you help me address the issue? Many thanks, ### Steps to reproduce the bug The JSONL file of [V_STaR_test_release.jsonl](https://huggingface.co/datasets/V-STaR-Bench/V-STaR/blob/main/V_STaR_test_release.jsonl) has the correct values of every "bboxes" for each sample. But in the Data Studio, we can see that the values of "bboxes" have changed, and load the dataset via API will also get the wrong values. ### Expected behavior Fix the bug to correctly download my dataset. ### Environment info - `datasets` version: 2.16.1 - Platform: Linux-5.14.0-427.22.1.el9_4.x86_64-x86_64-with-glibc2.34 - Python version: 3.10.16 - `huggingface_hub` version: 0.29.3 - PyArrow version: 19.0.0 - Pandas version: 2.2.3 - `fsspec` version: 2023.10.0
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7528/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7528/timeline
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7527
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7527/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7527/comments
https://api.github.com/repos/huggingface/datasets/issues/7527/events
https://github.com/huggingface/datasets/issues/7527
3,005,242,422
I_kwDODunzps6zIFw2
7,527
Auto-merge option for `convert-to-parquet`
{ "avatar_url": "https://avatars.githubusercontent.com/u/17013474?v=4", "events_url": "https://api.github.com/users/klamike/events{/privacy}", "followers_url": "https://api.github.com/users/klamike/followers", "following_url": "https://api.github.com/users/klamike/following{/other_user}", "gists_url": "https://api.github.com/users/klamike/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/klamike", "id": 17013474, "login": "klamike", "node_id": "MDQ6VXNlcjE3MDEzNDc0", "organizations_url": "https://api.github.com/users/klamike/orgs", "received_events_url": "https://api.github.com/users/klamike/received_events", "repos_url": "https://api.github.com/users/klamike/repos", "site_admin": false, "starred_url": "https://api.github.com/users/klamike/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/klamike/subscriptions", "type": "User", "url": "https://api.github.com/users/klamike", "user_view_type": "public" }
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
closed
false
{ "avatar_url": "https://avatars.githubusercontent.com/u/17013474?v=4", "events_url": "https://api.github.com/users/klamike/events{/privacy}", "followers_url": "https://api.github.com/users/klamike/followers", "following_url": "https://api.github.com/users/klamike/following{/other_user}", "gists_url": "https://api.github.com/users/klamike/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/klamike", "id": 17013474, "login": "klamike", "node_id": "MDQ6VXNlcjE3MDEzNDc0", "organizations_url": "https://api.github.com/users/klamike/orgs", "received_events_url": "https://api.github.com/users/klamike/received_events", "repos_url": "https://api.github.com/users/klamike/repos", "site_admin": false, "starred_url": "https://api.github.com/users/klamike/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/klamike/subscriptions", "type": "User", "url": "https://api.github.com/users/klamike", "user_view_type": "public" }
[ { "avatar_url": "https://avatars.githubusercontent.com/u/17013474?v=4", "events_url": "https://api.github.com/users/klamike/events{/privacy}", "followers_url": "https://api.github.com/users/klamike/followers", "following_url": "https://api.github.com/users/klamike/following{/other_user}", "gists_url": "https://api.github.com/users/klamike/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/klamike", "id": 17013474, "login": "klamike", "node_id": "MDQ6VXNlcjE3MDEzNDc0", "organizations_url": "https://api.github.com/users/klamike/orgs", "received_events_url": "https://api.github.com/users/klamike/received_events", "repos_url": "https://api.github.com/users/klamike/repos", "site_admin": false, "starred_url": "https://api.github.com/users/klamike/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/klamike/subscriptions", "type": "User", "url": "https://api.github.com/users/klamike", "user_view_type": "public" } ]
null
[ "Alternatively, there could be an option to switch from submitting PRs to just committing changes directly to `main`.", "Why not, I'd be in favor of `--merge-pull-request` to call `HfApi().merge_pull_request()` at the end of the conversion :) feel free to open a PR if you'd like", "#self-assign", "Closing since convert to parquet has been removed... https://github.com/huggingface/datasets/pull/7592#issuecomment-3073053138" ]
2025-04-18T16:03:22Z
2025-07-18T19:09:03Z
2025-07-18T19:09:03Z
CONTRIBUTOR
null
null
null
null
### Feature request Add a command-line option, e.g. `--auto-merge-pull-request` that enables automatic merging of the commits created by the `convert-to-parquet` tool. ### Motivation Large datasets may result in dozens of PRs due to the splitting mechanism. Each of these has to be manually accepted via the website. ### Your contribution Happy to look into submitting a PR if this is of interest to maintainers.
{ "avatar_url": "https://avatars.githubusercontent.com/u/17013474?v=4", "events_url": "https://api.github.com/users/klamike/events{/privacy}", "followers_url": "https://api.github.com/users/klamike/followers", "following_url": "https://api.github.com/users/klamike/following{/other_user}", "gists_url": "https://api.github.com/users/klamike/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/klamike", "id": 17013474, "login": "klamike", "node_id": "MDQ6VXNlcjE3MDEzNDc0", "organizations_url": "https://api.github.com/users/klamike/orgs", "received_events_url": "https://api.github.com/users/klamike/received_events", "repos_url": "https://api.github.com/users/klamike/repos", "site_admin": false, "starred_url": "https://api.github.com/users/klamike/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/klamike/subscriptions", "type": "User", "url": "https://api.github.com/users/klamike", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7527/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7527/timeline
null
completed
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7526
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7526/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7526/comments
https://api.github.com/repos/huggingface/datasets/issues/7526/events
https://github.com/huggingface/datasets/issues/7526
3,005,107,536
I_kwDODunzps6zHk1Q
7,526
Faster downloads/uploads with Xet storage
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
[]
open
false
null
[]
null
[]
2025-04-18T14:46:42Z
2025-05-12T12:09:09Z
null
MEMBER
null
null
null
null
![Image](https://github.com/user-attachments/assets/6e247f4a-d436-4428-a682-fe18ebdc73a9) ## Xet is out ! Over the past few weeks, Hugging Face’s [Xet Team](https://huggingface.co/xet-team) took a major step forward by [migrating the first Model and Dataset repositories off LFS and to Xet storage](https://huggingface.co/posts/jsulz/911431940353906). See more information on the HF blog: https://huggingface.co/blog/xet-on-the-hub You can already enable Xet on Hugging Face account to benefit from faster downloads and uploads :) We finalized an official integration with the `huggingface_hub` library that means you get the benefits of Xet without any significant changes to your current workflow. ## Previous versions of `datasets` For older versions of `datasets` you might see this warning in `push_to_hub()`: ``` Uploading files as bytes or binary IO objects is not supported by Xet Storage. ``` This means the `huggingface_hub` + Xet integration isn't enabled for your version of `datasets`. You can fix this by updating to `datasets>=3.6.0` and `huggingface_hub>=0.31.0` ``` pip install -U datasets huggingface_hub ``` ## The future Stay tuned for more Xet optimizations, especially on [Xet-optimized Parquet](https://huggingface.co/blog/improve_parquet_dedupe)
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 6, "total_count": 6, "url": "https://api.github.com/repos/huggingface/datasets/issues/7526/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7526/timeline
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7520
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7520/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7520/comments
https://api.github.com/repos/huggingface/datasets/issues/7520/events
https://github.com/huggingface/datasets/issues/7520
2,997,422,044
I_kwDODunzps6yqQfc
7,520
Update items in the dataset without `map`
{ "avatar_url": "https://avatars.githubusercontent.com/u/122402293?v=4", "events_url": "https://api.github.com/users/mashdragon/events{/privacy}", "followers_url": "https://api.github.com/users/mashdragon/followers", "following_url": "https://api.github.com/users/mashdragon/following{/other_user}", "gists_url": "https://api.github.com/users/mashdragon/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mashdragon", "id": 122402293, "login": "mashdragon", "node_id": "U_kgDOB0u19Q", "organizations_url": "https://api.github.com/users/mashdragon/orgs", "received_events_url": "https://api.github.com/users/mashdragon/received_events", "repos_url": "https://api.github.com/users/mashdragon/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mashdragon/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mashdragon/subscriptions", "type": "User", "url": "https://api.github.com/users/mashdragon", "user_view_type": "public" }
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
open
false
null
[]
null
[ "Hello!\n\nHave you looked at `Dataset.shard`? [Docs](https://huggingface.co/docs/datasets/en/process#shard)\n\nUsing this method you could break your dataset in N shards. Apply `map` on each shard and concatenate them back." ]
2025-04-15T19:39:01Z
2025-04-19T18:47:46Z
null
NONE
null
null
null
null
### Feature request I would like to be able to update items in my dataset without affecting all rows. At least if there was a range option, I would be able to process those items, save the dataset, and then continue. If I am supposed to split the dataset first, that is not clear, since the docs suggest that any of those functions returns a new object, so I don't think I can do that. ### Motivation I am applying an extremely time-consuming function to each item in my `Dataset`. Unfortunately, datasets only supports updating values via `map`, so if my computer dies in the middle of this long-running process, I lose all progress. This is far from ideal. I would like to use `datasets` throughout this processing, but this limitation is now forcing me to write my own dataset format just to do this intermediary operation. It would be less intuitive but I suppose I could split and then concatenate the dataset before saving? But this feels very inefficient. ### Your contribution I can test the feature.
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7520/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7520/timeline
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7518
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7518/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7518/comments
https://api.github.com/repos/huggingface/datasets/issues/7518/events
https://github.com/huggingface/datasets/issues/7518
2,996,141,825
I_kwDODunzps6ylX8B
7,518
num_proc parallelization works only for first ~10s.
{ "avatar_url": "https://avatars.githubusercontent.com/u/33901783?v=4", "events_url": "https://api.github.com/users/pshishodiaa/events{/privacy}", "followers_url": "https://api.github.com/users/pshishodiaa/followers", "following_url": "https://api.github.com/users/pshishodiaa/following{/other_user}", "gists_url": "https://api.github.com/users/pshishodiaa/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/pshishodiaa", "id": 33901783, "login": "pshishodiaa", "node_id": "MDQ6VXNlcjMzOTAxNzgz", "organizations_url": "https://api.github.com/users/pshishodiaa/orgs", "received_events_url": "https://api.github.com/users/pshishodiaa/received_events", "repos_url": "https://api.github.com/users/pshishodiaa/repos", "site_admin": false, "starred_url": "https://api.github.com/users/pshishodiaa/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/pshishodiaa/subscriptions", "type": "User", "url": "https://api.github.com/users/pshishodiaa", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "Hi, can you check if the processes are still alive ? It's a bit weird because `datasets` does check if processes crash and return an error in that case", "Thank you for reverting quickly. I digged a bit, and realized my disk's IOPS is also limited - which is causing this. will check further and report if it's an issue of hf datasets' side or mine. " ]
2025-04-15T11:44:03Z
2025-04-15T13:12:13Z
null
NONE
null
null
null
null
### Describe the bug When I try to load an already downloaded dataset with num_proc=64, the speed is very high for the first 10-20 seconds acheiving 30-40K samples / s, and 100% utilization for all cores but it soon drops to <= 1000 with almost 0% utilization for most cores. ### Steps to reproduce the bug ``` // download dataset with cli !huggingface-cli download --repo-type dataset timm/imagenet-1k-wds --max-workers 32 from datasets import load_dataset ds = load_dataset("timm/imagenet-1k-wds", num_proc=64) ``` ### Expected behavior 100% core utilization throughout. ### Environment info Azure A100-80GB, 16 cores VM ![Image](https://github.com/user-attachments/assets/69d00fe3-d720-4474-9439-21e046d85034)
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7518/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7518/timeline
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7517
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7517/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7517/comments
https://api.github.com/repos/huggingface/datasets/issues/7517/events
https://github.com/huggingface/datasets/issues/7517
2,996,106,077
I_kwDODunzps6ylPNd
7,517
Image Feature in Datasets Library Fails to Handle bytearray Objects from Spark DataFrames
{ "avatar_url": "https://avatars.githubusercontent.com/u/73196164?v=4", "events_url": "https://api.github.com/users/giraffacarp/events{/privacy}", "followers_url": "https://api.github.com/users/giraffacarp/followers", "following_url": "https://api.github.com/users/giraffacarp/following{/other_user}", "gists_url": "https://api.github.com/users/giraffacarp/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/giraffacarp", "id": 73196164, "login": "giraffacarp", "node_id": "MDQ6VXNlcjczMTk2MTY0", "organizations_url": "https://api.github.com/users/giraffacarp/orgs", "received_events_url": "https://api.github.com/users/giraffacarp/received_events", "repos_url": "https://api.github.com/users/giraffacarp/repos", "site_admin": false, "starred_url": "https://api.github.com/users/giraffacarp/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/giraffacarp/subscriptions", "type": "User", "url": "https://api.github.com/users/giraffacarp", "user_view_type": "public" }
[]
closed
false
{ "avatar_url": "https://avatars.githubusercontent.com/u/73196164?v=4", "events_url": "https://api.github.com/users/giraffacarp/events{/privacy}", "followers_url": "https://api.github.com/users/giraffacarp/followers", "following_url": "https://api.github.com/users/giraffacarp/following{/other_user}", "gists_url": "https://api.github.com/users/giraffacarp/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/giraffacarp", "id": 73196164, "login": "giraffacarp", "node_id": "MDQ6VXNlcjczMTk2MTY0", "organizations_url": "https://api.github.com/users/giraffacarp/orgs", "received_events_url": "https://api.github.com/users/giraffacarp/received_events", "repos_url": "https://api.github.com/users/giraffacarp/repos", "site_admin": false, "starred_url": "https://api.github.com/users/giraffacarp/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/giraffacarp/subscriptions", "type": "User", "url": "https://api.github.com/users/giraffacarp", "user_view_type": "public" }
[ { "avatar_url": "https://avatars.githubusercontent.com/u/73196164?v=4", "events_url": "https://api.github.com/users/giraffacarp/events{/privacy}", "followers_url": "https://api.github.com/users/giraffacarp/followers", "following_url": "https://api.github.com/users/giraffacarp/following{/other_user}", "gists_url": "https://api.github.com/users/giraffacarp/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/giraffacarp", "id": 73196164, "login": "giraffacarp", "node_id": "MDQ6VXNlcjczMTk2MTY0", "organizations_url": "https://api.github.com/users/giraffacarp/orgs", "received_events_url": "https://api.github.com/users/giraffacarp/received_events", "repos_url": "https://api.github.com/users/giraffacarp/repos", "site_admin": false, "starred_url": "https://api.github.com/users/giraffacarp/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/giraffacarp/subscriptions", "type": "User", "url": "https://api.github.com/users/giraffacarp", "user_view_type": "public" } ]
null
[ "Hi ! The `Image()` type accepts either\n- a `bytes` object containing the image bytes\n- a `str` object containing the image path\n- a `PIL.Image` object\n\nbut it doesn't support `bytearray`, maybe you can convert to `bytes` beforehand ?", "Hi @lhoestq, \nconverting to bytes is certainly possible and would work around the error. However, the core issue is that `Dataset` and `IterableDataset` behave differently with the features.\n\nI’d be happy to work on a fix for this issue.", "I see, that's an issue indeed. Feel free to ping me if I can help with reviews or any guidance\n\nIf it can help, the code that takes a Spark DataFrame and iterates on the rows for `IterableDataset` is here: \n\nhttps://github.com/huggingface/datasets/blob/6a96bf313085d7538a999b929a550e14e1d406c9/src/datasets/packaged_modules/spark/spark.py#L49-L53", "#self-assign" ]
2025-04-15T11:29:17Z
2025-05-07T14:17:30Z
2025-05-07T14:17:30Z
CONTRIBUTOR
null
null
null
null
### Describe the bug When using `IterableDataset.from_spark()` with a Spark DataFrame containing image data, the `Image` feature class fails to properly process this data type, causing an `AttributeError: 'bytearray' object has no attribute 'get'` ### Steps to reproduce the bug 1. Create a Spark DataFrame with a column containing image data as bytearray objects 2. Define a Feature schema with an Image feature 3. Create an IterableDataset using `IterableDataset.from_spark()` 4. Attempt to iterate through the dataset ``` from pyspark.sql import SparkSession from datasets import Dataset, IterableDataset, Features, Image, Value # initialize spark spark = SparkSession.builder.appName("MinimalRepro").getOrCreate() # create spark dataframe data = [(0, open("image.png", "rb").read())] df = spark.createDataFrame(data, "idx: int, image: binary") # convert to dataset features = Features({"idx": Value("int64"), "image": Image()}) ds = Dataset.from_spark(df, features=features) ds_iter = IterableDataset.from_spark(df, features=features) # iterate print(next(iter(ds))) print(next(iter(ds_iter))) ``` ### Expected behavior The features should work on `IterableDataset` the same way they work on `Dataset` ### Environment info - `datasets` version: 3.5.0 - Platform: macOS-15.3.2-arm64-arm-64bit - Python version: 3.12.7 - `huggingface_hub` version: 0.30.2 - PyArrow version: 18.1.0 - Pandas version: 2.2.3 - `fsspec` version: 2024.12.0
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7517/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7517/timeline
null
completed
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7516
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7516/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7516/comments
https://api.github.com/repos/huggingface/datasets/issues/7516/events
https://github.com/huggingface/datasets/issues/7516
2,995,780,283
I_kwDODunzps6yj_q7
7,516
unsloth/DeepSeek-R1-Distill-Qwen-32B server error
{ "avatar_url": "https://avatars.githubusercontent.com/u/164353862?v=4", "events_url": "https://api.github.com/users/Editor-1/events{/privacy}", "followers_url": "https://api.github.com/users/Editor-1/followers", "following_url": "https://api.github.com/users/Editor-1/following{/other_user}", "gists_url": "https://api.github.com/users/Editor-1/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/Editor-1", "id": 164353862, "login": "Editor-1", "node_id": "U_kgDOCcvXRg", "organizations_url": "https://api.github.com/users/Editor-1/orgs", "received_events_url": "https://api.github.com/users/Editor-1/received_events", "repos_url": "https://api.github.com/users/Editor-1/repos", "site_admin": false, "starred_url": "https://api.github.com/users/Editor-1/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Editor-1/subscriptions", "type": "User", "url": "https://api.github.com/users/Editor-1", "user_view_type": "public" }
[]
closed
false
null
[]
null
[]
2025-04-15T09:26:53Z
2025-04-15T09:57:26Z
2025-04-15T09:57:26Z
NONE
null
null
null
null
### Describe the bug hfhubhttperror: 500 server error: internal server error for url: https://huggingface.co/api/models/unsloth/deepseek-r1-distill-qwen-32b-bnb-4bit/commits/main (request id: root=1-67fe23fa-3a2150eb444c2a823c388579;de3aed68-c397-4da5-94d4-6565efd3b919) internal error - we're working hard to fix this as soon as possible! ### Steps to reproduce the bug unsloth/DeepSeek-R1-Distill-Qwen-32B server error ### Expected behavior Network repair ### Environment info The web side is also unavailable
{ "avatar_url": "https://avatars.githubusercontent.com/u/164353862?v=4", "events_url": "https://api.github.com/users/Editor-1/events{/privacy}", "followers_url": "https://api.github.com/users/Editor-1/followers", "following_url": "https://api.github.com/users/Editor-1/following{/other_user}", "gists_url": "https://api.github.com/users/Editor-1/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/Editor-1", "id": 164353862, "login": "Editor-1", "node_id": "U_kgDOCcvXRg", "organizations_url": "https://api.github.com/users/Editor-1/orgs", "received_events_url": "https://api.github.com/users/Editor-1/received_events", "repos_url": "https://api.github.com/users/Editor-1/repos", "site_admin": false, "starred_url": "https://api.github.com/users/Editor-1/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Editor-1/subscriptions", "type": "User", "url": "https://api.github.com/users/Editor-1", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7516/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7516/timeline
null
completed
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7515
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7515/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7515/comments
https://api.github.com/repos/huggingface/datasets/issues/7515/events
https://github.com/huggingface/datasets/issues/7515
2,995,082,418
I_kwDODunzps6yhVSy
7,515
`concatenate_datasets` does not preserve Pytorch format for IterableDataset
{ "avatar_url": "https://avatars.githubusercontent.com/u/5140987?v=4", "events_url": "https://api.github.com/users/francescorubbo/events{/privacy}", "followers_url": "https://api.github.com/users/francescorubbo/followers", "following_url": "https://api.github.com/users/francescorubbo/following{/other_user}", "gists_url": "https://api.github.com/users/francescorubbo/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/francescorubbo", "id": 5140987, "login": "francescorubbo", "node_id": "MDQ6VXNlcjUxNDA5ODc=", "organizations_url": "https://api.github.com/users/francescorubbo/orgs", "received_events_url": "https://api.github.com/users/francescorubbo/received_events", "repos_url": "https://api.github.com/users/francescorubbo/repos", "site_admin": false, "starred_url": "https://api.github.com/users/francescorubbo/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/francescorubbo/subscriptions", "type": "User", "url": "https://api.github.com/users/francescorubbo", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "Hi ! Oh indeed it would be cool to return the same format in that case. Would you like to submit a PR ? The function that does the concatenation is here:\n\nhttps://github.com/huggingface/datasets/blob/90e5bf8a8599b625d6103ee5ac83b98269991141/src/datasets/iterable_dataset.py#L3375-L3380", "Thank you for the pointer, @lhoestq ! See #7522 " ]
2025-04-15T04:36:34Z
2025-05-19T15:07:38Z
2025-05-19T15:07:38Z
CONTRIBUTOR
null
null
null
null
### Describe the bug When concatenating datasets with `concatenate_datasets`, I would expect the resulting combined dataset to be in the same format as the inputs (assuming it's consistent). This is indeed the behavior when combining `Dataset`, but not when combining `IterableDataset`. Specifically, when applying `concatenate_datasets` to a list of `IterableDataset` in Pytorch format (i.e. using `.with_format(Pytorch)`), the output `IterableDataset` is not in Pytorch format. ### Steps to reproduce the bug ``` import datasets ds = datasets.Dataset.from_dict({"a": [1,2,3]}) iterable_ds = ds.to_iterable_dataset() datasets.concatenate_datasets([ds.with_format("torch")]) # <- this preserves Pytorch format datasets.concatenate_datasets([iterable_ds.with_format("torch")]) # <- this does NOT preserves Pytorch format ``` ### Expected behavior Pytorch format should be preserved when combining IterableDataset in Pytorch format. ### Environment info datasets==3.5.0, Python 3.11.11, torch==2.2.2
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7515/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7515/timeline
null
completed
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7513
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7513/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7513/comments
https://api.github.com/repos/huggingface/datasets/issues/7513/events
https://github.com/huggingface/datasets/issues/7513
2,994,678,437
I_kwDODunzps6yfyql
7,513
MemoryError while creating dataset from generator
{ "avatar_url": "https://avatars.githubusercontent.com/u/43753582?v=4", "events_url": "https://api.github.com/users/simonreise/events{/privacy}", "followers_url": "https://api.github.com/users/simonreise/followers", "following_url": "https://api.github.com/users/simonreise/following{/other_user}", "gists_url": "https://api.github.com/users/simonreise/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/simonreise", "id": 43753582, "login": "simonreise", "node_id": "MDQ6VXNlcjQzNzUzNTgy", "organizations_url": "https://api.github.com/users/simonreise/orgs", "received_events_url": "https://api.github.com/users/simonreise/received_events", "repos_url": "https://api.github.com/users/simonreise/repos", "site_admin": false, "starred_url": "https://api.github.com/users/simonreise/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/simonreise/subscriptions", "type": "User", "url": "https://api.github.com/users/simonreise", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "Upd: created a PR that can probably solve the problem: #7514", "Hi ! We need to take the generator into account for the cache. The generator is hashed to make the dataset fingerprint used by the cache. This way you can reload the Dataset from the cache without regenerating in subsequent `from_generator` calls.\n\nMaybe instead of removing generator from the hasher input, we can let users pass their own Dataset fingerprint to `from_generator`, and if it's specified we don't need to hash anything", "Upd: I successfully generated a dataset from my large geospatial data with `generator` excluded from hashing and saved it to disk without running into memory errors. So, it looks like there are no other bottlenecks in dataset generation in my case\n\nMaybe letting users pass their own fingerprint to skip hashing can be a great solution to that issue!", "@lhoestq I tried to implement user-defined dataset fingerprint in #7533 . Am I doing it right?" ]
2025-04-15T01:02:02Z
2025-04-23T19:37:08Z
null
NONE
null
null
null
null
### Describe the bug # TL:DR `Dataset.from_generator` function passes all of its arguments to `BuilderConfig.create_config_id`, including `generator` function itself. `BuilderConfig.create_config_id` function tries to hash all the args, which can take a large amount of time or even cause MemoryError if the dataset processed in a generator function is large enough. Maybe we should pop `generator` from `config_kwargs_to_add_to_suffix` before hashing to avoid it. # Full description I have a pretty large spatial imagery dataset that is generated from two xbatcher.BatchGenerators via custom `dataset_generator` function that looks like this if simplified: ``` def dataset_generator(): for index in samples: data_dict = { "key": index, "x": x_batches[index].data, "y": y_batches[index].data, } yield data_dict ``` Then I use `datasets.Dataset.from_generator` to generate the dataset itself. ``` # Create dataset ds = datasets.Dataset.from_generator( dataset_generator, features=feat, cache_dir=(output / ".cache"), ) ``` It works nicely with pretty small data, but if the dataset is huge and barely fits in memory, it crashes with memory error: <details> <summary>Full stack trace</summary> ``` File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\remote_sensing_processor\segmentation\semantic\tiles.py:248](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/remote_sensing_processor/segmentation/semantic/tiles.py#line=247), in generate_tiles(x, y, output, tile_size, shuffle, split, x_dtype, y_dtype, x_nodata, y_nodata) 245 yield data_dict 247 # Create dataset --> 248 ds = datasets.Dataset.from_generator( 249 dataset_generator, 250 features=feat, 251 cache_dir=(output / ".cache"), 252 ) 254 # Save dataset 255 ds.save_to_disk(output / name) File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\datasets\arrow_dataset.py:1105](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/datasets/arrow_dataset.py#line=1104), in Dataset.from_generator(generator, features, cache_dir, keep_in_memory, gen_kwargs, num_proc, split, **kwargs) 1052 """Create a Dataset from a generator. 1053 1054 Args: (...) 1101 ``` 1102 """ 1103 from .io.generator import GeneratorDatasetInputStream -> 1105 return GeneratorDatasetInputStream( 1106 generator=generator, 1107 features=features, 1108 cache_dir=cache_dir, 1109 keep_in_memory=keep_in_memory, 1110 gen_kwargs=gen_kwargs, 1111 num_proc=num_proc, 1112 split=split, 1113 **kwargs, 1114 ).read() File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\datasets\io\generator.py:29](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/datasets/io/generator.py#line=28), in GeneratorDatasetInputStream.__init__(self, generator, features, cache_dir, keep_in_memory, streaming, gen_kwargs, num_proc, split, **kwargs) 9 def __init__( 10 self, 11 generator: Callable, (...) 19 **kwargs, 20 ): 21 super().__init__( 22 features=features, 23 cache_dir=cache_dir, (...) 27 **kwargs, 28 ) ---> 29 self.builder = Generator( 30 cache_dir=cache_dir, 31 features=features, 32 generator=generator, 33 gen_kwargs=gen_kwargs, 34 split=split, 35 **kwargs, 36 ) File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\datasets\builder.py:343](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/datasets/builder.py#line=342), in DatasetBuilder.__init__(self, cache_dir, dataset_name, config_name, hash, base_path, info, features, token, repo_id, data_files, data_dir, storage_options, writer_batch_size, **config_kwargs) 341 config_kwargs["data_dir"] = data_dir 342 self.config_kwargs = config_kwargs --> 343 self.config, self.config_id = self._create_builder_config( 344 config_name=config_name, 345 custom_features=features, 346 **config_kwargs, 347 ) 349 # prepare info: DatasetInfo are a standardized dataclass across all datasets 350 # Prefill datasetinfo 351 if info is None: 352 # TODO FOR PACKAGED MODULES IT IMPORTS DATA FROM src/packaged_modules which doesn't make sense File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\datasets\builder.py:604](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/datasets/builder.py#line=603), in DatasetBuilder._create_builder_config(self, config_name, custom_features, **config_kwargs) 598 builder_config._resolve_data_files( 599 base_path=self.base_path, 600 download_config=DownloadConfig(token=self.token, storage_options=self.storage_options), 601 ) 603 # compute the config id that is going to be used for caching --> 604 config_id = builder_config.create_config_id( 605 config_kwargs, 606 custom_features=custom_features, 607 ) 608 is_custom = (config_id not in self.builder_configs) and config_id != "default" 609 if is_custom: File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\datasets\builder.py:187](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/datasets/builder.py#line=186), in BuilderConfig.create_config_id(self, config_kwargs, custom_features) 185 suffix = Hasher.hash(config_kwargs_to_add_to_suffix) 186 else: --> 187 suffix = Hasher.hash(config_kwargs_to_add_to_suffix) 189 if custom_features is not None: 190 m = Hasher() File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\datasets\fingerprint.py:188](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/datasets/fingerprint.py#line=187), in Hasher.hash(cls, value) 186 @classmethod 187 def hash(cls, value: Any) -> str: --> 188 return cls.hash_bytes(dumps(value)) File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\datasets\utils\_dill.py:109](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/datasets/utils/_dill.py#line=108), in dumps(obj) 107 """Pickle an object to a string.""" 108 file = BytesIO() --> 109 dump(obj, file) 110 return file.getvalue() File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\datasets\utils\_dill.py:103](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/datasets/utils/_dill.py#line=102), in dump(obj, file) 101 def dump(obj, file): 102 """Pickle an object to a file.""" --> 103 Pickler(file, recurse=True).dump(obj) File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\dill\_dill.py:420](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/dill/_dill.py#line=419), in Pickler.dump(self, obj) 418 def dump(self, obj): #NOTE: if settings change, need to update attributes 419 logger.trace_setup(self) --> 420 StockPickler.dump(self, obj) File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:484](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=483), in _Pickler.dump(self, obj) 482 if self.proto >= 4: 483 self.framer.start_framing() --> 484 self.save(obj) 485 self.write(STOP) 486 self.framer.end_framing() File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\datasets\utils\_dill.py:70](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/datasets/utils/_dill.py#line=69), in Pickler.save(self, obj, save_persistent_id) 68 if obj_type is FunctionType: 69 obj = getattr(obj, "_torchdynamo_orig_callable", obj) ---> 70 dill.Pickler.save(self, obj, save_persistent_id=save_persistent_id) File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\dill\_dill.py:414](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/dill/_dill.py#line=413), in Pickler.save(self, obj, save_persistent_id) 412 msg = "Can't pickle %s: attribute lookup builtins.generator failed" % GeneratorType 413 raise PicklingError(msg) --> 414 StockPickler.save(self, obj, save_persistent_id) File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:558](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=557), in _Pickler.save(self, obj, save_persistent_id) 556 f = self.dispatch.get(t) 557 if f is not None: --> 558 f(self, obj) # Call unbound method with explicit self 559 return 561 # Check private dispatch table if any, or else 562 # copyreg.dispatch_table File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\dill\_dill.py:1217](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/dill/_dill.py#line=1216), in save_module_dict(pickler, obj) 1214 if is_dill(pickler, child=False) and pickler._session: 1215 # we only care about session the first pass thru 1216 pickler._first_pass = False -> 1217 StockPickler.save_dict(pickler, obj) 1218 logger.trace(pickler, "# D2") 1219 return File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:990](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=989), in _Pickler.save_dict(self, obj) 987 self.write(MARK + DICT) 989 self.memoize(obj) --> 990 self._batch_setitems(obj.items()) File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\datasets\utils\_dill.py:83](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/datasets/utils/_dill.py#line=82), in Pickler._batch_setitems(self, items) 80 from datasets.fingerprint import Hasher 82 items = sorted(items, key=lambda x: Hasher.hash(x[0])) ---> 83 dill.Pickler._batch_setitems(self, items) File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:1014](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=1013), in _Pickler._batch_setitems(self, items) 1012 for k, v in tmp: 1013 save(k) -> 1014 save(v) 1015 write(SETITEMS) 1016 elif n: File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\datasets\utils\_dill.py:70](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/datasets/utils/_dill.py#line=69), in Pickler.save(self, obj, save_persistent_id) 68 if obj_type is FunctionType: 69 obj = getattr(obj, "_torchdynamo_orig_callable", obj) ---> 70 dill.Pickler.save(self, obj, save_persistent_id=save_persistent_id) File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\dill\_dill.py:414](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/dill/_dill.py#line=413), in Pickler.save(self, obj, save_persistent_id) 412 msg = "Can't pickle %s: attribute lookup builtins.generator failed" % GeneratorType 413 raise PicklingError(msg) --> 414 StockPickler.save(self, obj, save_persistent_id) File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:558](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=557), in _Pickler.save(self, obj, save_persistent_id) 556 f = self.dispatch.get(t) 557 if f is not None: --> 558 f(self, obj) # Call unbound method with explicit self 559 return 561 # Check private dispatch table if any, or else 562 # copyreg.dispatch_table File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\dill\_dill.py:1985](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/dill/_dill.py#line=1984), in save_function(pickler, obj) 1982 if state_dict: 1983 state = state, state_dict -> 1985 _save_with_postproc(pickler, (_create_function, ( 1986 obj.__code__, globs, obj.__name__, obj.__defaults__, 1987 closure 1988 ), state), obj=obj, postproc_list=postproc_list) 1990 # Lift closure cell update to earliest function (#458) 1991 if _postproc: File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\dill\_dill.py:1117](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/dill/_dill.py#line=1116), in _save_with_postproc(pickler, reduction, is_pickler_dill, obj, postproc_list) 1115 continue 1116 else: -> 1117 pickler.save_reduce(*reduction) 1118 # pop None created by calling preprocessing step off stack 1119 pickler.write(POP) File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:690](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=689), in _Pickler.save_reduce(self, func, args, state, listitems, dictitems, state_setter, obj) 688 else: 689 save(func) --> 690 save(args) 691 write(REDUCE) 693 if obj is not None: 694 # If the object is already in the memo, this means it is 695 # recursive. In this case, throw away everything we put on the 696 # stack, and fetch the object back from the memo. File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\datasets\utils\_dill.py:70](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/datasets/utils/_dill.py#line=69), in Pickler.save(self, obj, save_persistent_id) 68 if obj_type is FunctionType: 69 obj = getattr(obj, "_torchdynamo_orig_callable", obj) ---> 70 dill.Pickler.save(self, obj, save_persistent_id=save_persistent_id) File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\dill\_dill.py:414](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/dill/_dill.py#line=413), in Pickler.save(self, obj, save_persistent_id) 412 msg = "Can't pickle %s: attribute lookup builtins.generator failed" % GeneratorType 413 raise PicklingError(msg) --> 414 StockPickler.save(self, obj, save_persistent_id) File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:558](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=557), in _Pickler.save(self, obj, save_persistent_id) 556 f = self.dispatch.get(t) 557 if f is not None: --> 558 f(self, obj) # Call unbound method with explicit self 559 return 561 # Check private dispatch table if any, or else 562 # copyreg.dispatch_table File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:905](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=904), in _Pickler.save_tuple(self, obj) 903 if n <= 3 and self.proto >= 2: 904 for element in obj: --> 905 save(element) 906 # Subtle. Same as in the big comment below. 907 if id(obj) in memo: File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\datasets\utils\_dill.py:70](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/datasets/utils/_dill.py#line=69), in Pickler.save(self, obj, save_persistent_id) 68 if obj_type is FunctionType: 69 obj = getattr(obj, "_torchdynamo_orig_callable", obj) ---> 70 dill.Pickler.save(self, obj, save_persistent_id=save_persistent_id) File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\dill\_dill.py:414](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/dill/_dill.py#line=413), in Pickler.save(self, obj, save_persistent_id) 412 msg = "Can't pickle %s: attribute lookup builtins.generator failed" % GeneratorType 413 raise PicklingError(msg) --> 414 StockPickler.save(self, obj, save_persistent_id) File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:601](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=600), in _Pickler.save(self, obj, save_persistent_id) 597 raise PicklingError("Tuple returned by %s must have " 598 "two to six elements" % reduce) 600 # Save the reduce() output and finally memoize the object --> 601 self.save_reduce(obj=obj, *rv) File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:715](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=714), in _Pickler.save_reduce(self, func, args, state, listitems, dictitems, state_setter, obj) 713 if state is not None: 714 if state_setter is None: --> 715 save(state) 716 write(BUILD) 717 else: 718 # If a state_setter is specified, call it instead of load_build 719 # to update obj's with its previous state. 720 # First, push state_setter and its tuple of expected arguments 721 # (obj, state) onto the stack. File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\datasets\utils\_dill.py:70](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/datasets/utils/_dill.py#line=69), in Pickler.save(self, obj, save_persistent_id) 68 if obj_type is FunctionType: 69 obj = getattr(obj, "_torchdynamo_orig_callable", obj) ---> 70 dill.Pickler.save(self, obj, save_persistent_id=save_persistent_id) File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\dill\_dill.py:414](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/dill/_dill.py#line=413), in Pickler.save(self, obj, save_persistent_id) 412 msg = "Can't pickle %s: attribute lookup builtins.generator failed" % GeneratorType 413 raise PicklingError(msg) --> 414 StockPickler.save(self, obj, save_persistent_id) File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:558](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=557), in _Pickler.save(self, obj, save_persistent_id) 556 f = self.dispatch.get(t) 557 if f is not None: --> 558 f(self, obj) # Call unbound method with explicit self 559 return 561 # Check private dispatch table if any, or else 562 # copyreg.dispatch_table File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\dill\_dill.py:1217](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/dill/_dill.py#line=1216), in save_module_dict(pickler, obj) 1214 if is_dill(pickler, child=False) and pickler._session: 1215 # we only care about session the first pass thru 1216 pickler._first_pass = False -> 1217 StockPickler.save_dict(pickler, obj) 1218 logger.trace(pickler, "# D2") 1219 return File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:990](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=989), in _Pickler.save_dict(self, obj) 987 self.write(MARK + DICT) 989 self.memoize(obj) --> 990 self._batch_setitems(obj.items()) File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\datasets\utils\_dill.py:83](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/datasets/utils/_dill.py#line=82), in Pickler._batch_setitems(self, items) 80 from datasets.fingerprint import Hasher 82 items = sorted(items, key=lambda x: Hasher.hash(x[0])) ---> 83 dill.Pickler._batch_setitems(self, items) File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:1014](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=1013), in _Pickler._batch_setitems(self, items) 1012 for k, v in tmp: 1013 save(k) -> 1014 save(v) 1015 write(SETITEMS) 1016 elif n: [... skipping similar frames: Pickler.save at line 70 (1 times), Pickler.save at line 414 (1 times)] File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:601](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=600), in _Pickler.save(self, obj, save_persistent_id) 597 raise PicklingError("Tuple returned by %s must have " 598 "two to six elements" % reduce) 600 # Save the reduce() output and finally memoize the object --> 601 self.save_reduce(obj=obj, *rv) File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:715](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=714), in _Pickler.save_reduce(self, func, args, state, listitems, dictitems, state_setter, obj) 713 if state is not None: 714 if state_setter is None: --> 715 save(state) 716 write(BUILD) 717 else: 718 # If a state_setter is specified, call it instead of load_build 719 # to update obj's with its previous state. 720 # First, push state_setter and its tuple of expected arguments 721 # (obj, state) onto the stack. File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\datasets\utils\_dill.py:70](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/datasets/utils/_dill.py#line=69), in Pickler.save(self, obj, save_persistent_id) 68 if obj_type is FunctionType: 69 obj = getattr(obj, "_torchdynamo_orig_callable", obj) ---> 70 dill.Pickler.save(self, obj, save_persistent_id=save_persistent_id) File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\dill\_dill.py:414](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/dill/_dill.py#line=413), in Pickler.save(self, obj, save_persistent_id) 412 msg = "Can't pickle %s: attribute lookup builtins.generator failed" % GeneratorType 413 raise PicklingError(msg) --> 414 StockPickler.save(self, obj, save_persistent_id) File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:558](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=557), in _Pickler.save(self, obj, save_persistent_id) 556 f = self.dispatch.get(t) 557 if f is not None: --> 558 f(self, obj) # Call unbound method with explicit self 559 return 561 # Check private dispatch table if any, or else 562 # copyreg.dispatch_table File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:905](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=904), in _Pickler.save_tuple(self, obj) 903 if n <= 3 and self.proto >= 2: 904 for element in obj: --> 905 save(element) 906 # Subtle. Same as in the big comment below. 907 if id(obj) in memo: File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\datasets\utils\_dill.py:70](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/datasets/utils/_dill.py#line=69), in Pickler.save(self, obj, save_persistent_id) 68 if obj_type is FunctionType: 69 obj = getattr(obj, "_torchdynamo_orig_callable", obj) ---> 70 dill.Pickler.save(self, obj, save_persistent_id=save_persistent_id) File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\dill\_dill.py:414](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/dill/_dill.py#line=413), in Pickler.save(self, obj, save_persistent_id) 412 msg = "Can't pickle %s: attribute lookup builtins.generator failed" % GeneratorType 413 raise PicklingError(msg) --> 414 StockPickler.save(self, obj, save_persistent_id) File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:558](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=557), in _Pickler.save(self, obj, save_persistent_id) 556 f = self.dispatch.get(t) 557 if f is not None: --> 558 f(self, obj) # Call unbound method with explicit self 559 return 561 # Check private dispatch table if any, or else 562 # copyreg.dispatch_table File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\dill\_dill.py:1217](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/dill/_dill.py#line=1216), in save_module_dict(pickler, obj) 1214 if is_dill(pickler, child=False) and pickler._session: 1215 # we only care about session the first pass thru 1216 pickler._first_pass = False -> 1217 StockPickler.save_dict(pickler, obj) 1218 logger.trace(pickler, "# D2") 1219 return File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:990](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=989), in _Pickler.save_dict(self, obj) 987 self.write(MARK + DICT) 989 self.memoize(obj) --> 990 self._batch_setitems(obj.items()) File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\datasets\utils\_dill.py:83](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/datasets/utils/_dill.py#line=82), in Pickler._batch_setitems(self, items) 80 from datasets.fingerprint import Hasher 82 items = sorted(items, key=lambda x: Hasher.hash(x[0])) ---> 83 dill.Pickler._batch_setitems(self, items) File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:1014](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=1013), in _Pickler._batch_setitems(self, items) 1012 for k, v in tmp: 1013 save(k) -> 1014 save(v) 1015 write(SETITEMS) 1016 elif n: File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\datasets\utils\_dill.py:70](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/datasets/utils/_dill.py#line=69), in Pickler.save(self, obj, save_persistent_id) 68 if obj_type is FunctionType: 69 obj = getattr(obj, "_torchdynamo_orig_callable", obj) ---> 70 dill.Pickler.save(self, obj, save_persistent_id=save_persistent_id) File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\dill\_dill.py:414](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/dill/_dill.py#line=413), in Pickler.save(self, obj, save_persistent_id) 412 msg = "Can't pickle %s: attribute lookup builtins.generator failed" % GeneratorType 413 raise PicklingError(msg) --> 414 StockPickler.save(self, obj, save_persistent_id) File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:601](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=600), in _Pickler.save(self, obj, save_persistent_id) 597 raise PicklingError("Tuple returned by %s must have " 598 "two to six elements" % reduce) 600 # Save the reduce() output and finally memoize the object --> 601 self.save_reduce(obj=obj, *rv) File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:715](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=714), in _Pickler.save_reduce(self, func, args, state, listitems, dictitems, state_setter, obj) 713 if state is not None: 714 if state_setter is None: --> 715 save(state) 716 write(BUILD) 717 else: 718 # If a state_setter is specified, call it instead of load_build 719 # to update obj's with its previous state. 720 # First, push state_setter and its tuple of expected arguments 721 # (obj, state) onto the stack. File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\datasets\utils\_dill.py:70](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/datasets/utils/_dill.py#line=69), in Pickler.save(self, obj, save_persistent_id) 68 if obj_type is FunctionType: 69 obj = getattr(obj, "_torchdynamo_orig_callable", obj) ---> 70 dill.Pickler.save(self, obj, save_persistent_id=save_persistent_id) File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\dill\_dill.py:414](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/dill/_dill.py#line=413), in Pickler.save(self, obj, save_persistent_id) 412 msg = "Can't pickle %s: attribute lookup builtins.generator failed" % GeneratorType 413 raise PicklingError(msg) --> 414 StockPickler.save(self, obj, save_persistent_id) File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:558](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=557), in _Pickler.save(self, obj, save_persistent_id) 556 f = self.dispatch.get(t) 557 if f is not None: --> 558 f(self, obj) # Call unbound method with explicit self 559 return 561 # Check private dispatch table if any, or else 562 # copyreg.dispatch_table File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:905](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=904), in _Pickler.save_tuple(self, obj) 903 if n <= 3 and self.proto >= 2: 904 for element in obj: --> 905 save(element) 906 # Subtle. Same as in the big comment below. 907 if id(obj) in memo: File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\datasets\utils\_dill.py:70](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/datasets/utils/_dill.py#line=69), in Pickler.save(self, obj, save_persistent_id) 68 if obj_type is FunctionType: 69 obj = getattr(obj, "_torchdynamo_orig_callable", obj) ---> 70 dill.Pickler.save(self, obj, save_persistent_id=save_persistent_id) File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\dill\_dill.py:414](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/dill/_dill.py#line=413), in Pickler.save(self, obj, save_persistent_id) 412 msg = "Can't pickle %s: attribute lookup builtins.generator failed" % GeneratorType 413 raise PicklingError(msg) --> 414 StockPickler.save(self, obj, save_persistent_id) File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:558](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=557), in _Pickler.save(self, obj, save_persistent_id) 556 f = self.dispatch.get(t) 557 if f is not None: --> 558 f(self, obj) # Call unbound method with explicit self 559 return 561 # Check private dispatch table if any, or else 562 # copyreg.dispatch_table File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\dill\_dill.py:1217](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/dill/_dill.py#line=1216), in save_module_dict(pickler, obj) 1214 if is_dill(pickler, child=False) and pickler._session: 1215 # we only care about session the first pass thru 1216 pickler._first_pass = False -> 1217 StockPickler.save_dict(pickler, obj) 1218 logger.trace(pickler, "# D2") 1219 return File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:990](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=989), in _Pickler.save_dict(self, obj) 987 self.write(MARK + DICT) 989 self.memoize(obj) --> 990 self._batch_setitems(obj.items()) File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\datasets\utils\_dill.py:83](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/datasets/utils/_dill.py#line=82), in Pickler._batch_setitems(self, items) 80 from datasets.fingerprint import Hasher 82 items = sorted(items, key=lambda x: Hasher.hash(x[0])) ---> 83 dill.Pickler._batch_setitems(self, items) File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:1014](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=1013), in _Pickler._batch_setitems(self, items) 1012 for k, v in tmp: 1013 save(k) -> 1014 save(v) 1015 write(SETITEMS) 1016 elif n: File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\datasets\utils\_dill.py:70](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/datasets/utils/_dill.py#line=69), in Pickler.save(self, obj, save_persistent_id) 68 if obj_type is FunctionType: 69 obj = getattr(obj, "_torchdynamo_orig_callable", obj) ---> 70 dill.Pickler.save(self, obj, save_persistent_id=save_persistent_id) File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\dill\_dill.py:414](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/dill/_dill.py#line=413), in Pickler.save(self, obj, save_persistent_id) 412 msg = "Can't pickle %s: attribute lookup builtins.generator failed" % GeneratorType 413 raise PicklingError(msg) --> 414 StockPickler.save(self, obj, save_persistent_id) File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:601](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=600), in _Pickler.save(self, obj, save_persistent_id) 597 raise PicklingError("Tuple returned by %s must have " 598 "two to six elements" % reduce) 600 # Save the reduce() output and finally memoize the object --> 601 self.save_reduce(obj=obj, *rv) File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:690](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=689), in _Pickler.save_reduce(self, func, args, state, listitems, dictitems, state_setter, obj) 688 else: 689 save(func) --> 690 save(args) 691 write(REDUCE) 693 if obj is not None: 694 # If the object is already in the memo, this means it is 695 # recursive. In this case, throw away everything we put on the 696 # stack, and fetch the object back from the memo. File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\datasets\utils\_dill.py:70](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/datasets/utils/_dill.py#line=69), in Pickler.save(self, obj, save_persistent_id) 68 if obj_type is FunctionType: 69 obj = getattr(obj, "_torchdynamo_orig_callable", obj) ---> 70 dill.Pickler.save(self, obj, save_persistent_id=save_persistent_id) File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\dill\_dill.py:414](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/dill/_dill.py#line=413), in Pickler.save(self, obj, save_persistent_id) 412 msg = "Can't pickle %s: attribute lookup builtins.generator failed" % GeneratorType 413 raise PicklingError(msg) --> 414 StockPickler.save(self, obj, save_persistent_id) File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:558](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=557), in _Pickler.save(self, obj, save_persistent_id) 556 f = self.dispatch.get(t) 557 if f is not None: --> 558 f(self, obj) # Call unbound method with explicit self 559 return 561 # Check private dispatch table if any, or else 562 # copyreg.dispatch_table File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:920](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=919), in _Pickler.save_tuple(self, obj) 918 write(MARK) 919 for element in obj: --> 920 save(element) 922 if id(obj) in memo: 923 # Subtle. d was not in memo when we entered save_tuple(), so 924 # the process of saving the tuple's elements must have saved (...) 928 # could have been done in the "for element" loop instead, but 929 # recursive tuples are a rare thing. 930 get = self.get(memo[id(obj)][0]) File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\datasets\utils\_dill.py:70](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/datasets/utils/_dill.py#line=69), in Pickler.save(self, obj, save_persistent_id) 68 if obj_type is FunctionType: 69 obj = getattr(obj, "_torchdynamo_orig_callable", obj) ---> 70 dill.Pickler.save(self, obj, save_persistent_id=save_persistent_id) File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\dill\_dill.py:414](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/dill/_dill.py#line=413), in Pickler.save(self, obj, save_persistent_id) 412 msg = "Can't pickle %s: attribute lookup builtins.generator failed" % GeneratorType 413 raise PicklingError(msg) --> 414 StockPickler.save(self, obj, save_persistent_id) File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:601](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=600), in _Pickler.save(self, obj, save_persistent_id) 597 raise PicklingError("Tuple returned by %s must have " 598 "two to six elements" % reduce) 600 # Save the reduce() output and finally memoize the object --> 601 self.save_reduce(obj=obj, *rv) File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:715](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=714), in _Pickler.save_reduce(self, func, args, state, listitems, dictitems, state_setter, obj) 713 if state is not None: 714 if state_setter is None: --> 715 save(state) 716 write(BUILD) 717 else: 718 # If a state_setter is specified, call it instead of load_build 719 # to update obj's with its previous state. 720 # First, push state_setter and its tuple of expected arguments 721 # (obj, state) onto the stack. File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\datasets\utils\_dill.py:70](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/datasets/utils/_dill.py#line=69), in Pickler.save(self, obj, save_persistent_id) 68 if obj_type is FunctionType: 69 obj = getattr(obj, "_torchdynamo_orig_callable", obj) ---> 70 dill.Pickler.save(self, obj, save_persistent_id=save_persistent_id) File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\dill\_dill.py:414](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/dill/_dill.py#line=413), in Pickler.save(self, obj, save_persistent_id) 412 msg = "Can't pickle %s: attribute lookup builtins.generator failed" % GeneratorType 413 raise PicklingError(msg) --> 414 StockPickler.save(self, obj, save_persistent_id) File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:558](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=557), in _Pickler.save(self, obj, save_persistent_id) 556 f = self.dispatch.get(t) 557 if f is not None: --> 558 f(self, obj) # Call unbound method with explicit self 559 return 561 # Check private dispatch table if any, or else 562 # copyreg.dispatch_table File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\dill\_dill.py:1217](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/dill/_dill.py#line=1216), in save_module_dict(pickler, obj) 1214 if is_dill(pickler, child=False) and pickler._session: 1215 # we only care about session the first pass thru 1216 pickler._first_pass = False -> 1217 StockPickler.save_dict(pickler, obj) 1218 logger.trace(pickler, "# D2") 1219 return File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:990](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=989), in _Pickler.save_dict(self, obj) 987 self.write(MARK + DICT) 989 self.memoize(obj) --> 990 self._batch_setitems(obj.items()) File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\datasets\utils\_dill.py:83](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/datasets/utils/_dill.py#line=82), in Pickler._batch_setitems(self, items) 80 from datasets.fingerprint import Hasher 82 items = sorted(items, key=lambda x: Hasher.hash(x[0])) ---> 83 dill.Pickler._batch_setitems(self, items) File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:1014](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=1013), in _Pickler._batch_setitems(self, items) 1012 for k, v in tmp: 1013 save(k) -> 1014 save(v) 1015 write(SETITEMS) 1016 elif n: File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\datasets\utils\_dill.py:70](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/datasets/utils/_dill.py#line=69), in Pickler.save(self, obj, save_persistent_id) 68 if obj_type is FunctionType: 69 obj = getattr(obj, "_torchdynamo_orig_callable", obj) ---> 70 dill.Pickler.save(self, obj, save_persistent_id=save_persistent_id) File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\dill\_dill.py:414](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/dill/_dill.py#line=413), in Pickler.save(self, obj, save_persistent_id) 412 msg = "Can't pickle %s: attribute lookup builtins.generator failed" % GeneratorType 413 raise PicklingError(msg) --> 414 StockPickler.save(self, obj, save_persistent_id) File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:558](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=557), in _Pickler.save(self, obj, save_persistent_id) 556 f = self.dispatch.get(t) 557 if f is not None: --> 558 f(self, obj) # Call unbound method with explicit self 559 return 561 # Check private dispatch table if any, or else 562 # copyreg.dispatch_table File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\dill\_dill.py:1217](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/dill/_dill.py#line=1216), in save_module_dict(pickler, obj) 1214 if is_dill(pickler, child=False) and pickler._session: 1215 # we only care about session the first pass thru 1216 pickler._first_pass = False -> 1217 StockPickler.save_dict(pickler, obj) 1218 logger.trace(pickler, "# D2") 1219 return File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:990](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=989), in _Pickler.save_dict(self, obj) 987 self.write(MARK + DICT) 989 self.memoize(obj) --> 990 self._batch_setitems(obj.items()) File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\datasets\utils\_dill.py:83](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/datasets/utils/_dill.py#line=82), in Pickler._batch_setitems(self, items) 80 from datasets.fingerprint import Hasher 82 items = sorted(items, key=lambda x: Hasher.hash(x[0])) ---> 83 dill.Pickler._batch_setitems(self, items) File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:1019](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=1018), in _Pickler._batch_setitems(self, items) 1017 k, v = tmp[0] 1018 save(k) -> 1019 save(v) 1020 write(SETITEM) 1021 # else tmp is empty, and we're done File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\datasets\utils\_dill.py:70](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/datasets/utils/_dill.py#line=69), in Pickler.save(self, obj, save_persistent_id) 68 if obj_type is FunctionType: 69 obj = getattr(obj, "_torchdynamo_orig_callable", obj) ---> 70 dill.Pickler.save(self, obj, save_persistent_id=save_persistent_id) File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\dill\_dill.py:414](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/dill/_dill.py#line=413), in Pickler.save(self, obj, save_persistent_id) 412 msg = "Can't pickle %s: attribute lookup builtins.generator failed" % GeneratorType 413 raise PicklingError(msg) --> 414 StockPickler.save(self, obj, save_persistent_id) File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:601](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=600), in _Pickler.save(self, obj, save_persistent_id) 597 raise PicklingError("Tuple returned by %s must have " 598 "two to six elements" % reduce) 600 # Save the reduce() output and finally memoize the object --> 601 self.save_reduce(obj=obj, *rv) File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:715](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=714), in _Pickler.save_reduce(self, func, args, state, listitems, dictitems, state_setter, obj) 713 if state is not None: 714 if state_setter is None: --> 715 save(state) 716 write(BUILD) 717 else: 718 # If a state_setter is specified, call it instead of load_build 719 # to update obj's with its previous state. 720 # First, push state_setter and its tuple of expected arguments 721 # (obj, state) onto the stack. File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\datasets\utils\_dill.py:70](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/datasets/utils/_dill.py#line=69), in Pickler.save(self, obj, save_persistent_id) 68 if obj_type is FunctionType: 69 obj = getattr(obj, "_torchdynamo_orig_callable", obj) ---> 70 dill.Pickler.save(self, obj, save_persistent_id=save_persistent_id) File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\dill\_dill.py:414](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/dill/_dill.py#line=413), in Pickler.save(self, obj, save_persistent_id) 412 msg = "Can't pickle %s: attribute lookup builtins.generator failed" % GeneratorType 413 raise PicklingError(msg) --> 414 StockPickler.save(self, obj, save_persistent_id) File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:558](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=557), in _Pickler.save(self, obj, save_persistent_id) 556 f = self.dispatch.get(t) 557 if f is not None: --> 558 f(self, obj) # Call unbound method with explicit self 559 return 561 # Check private dispatch table if any, or else 562 # copyreg.dispatch_table File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\dill\_dill.py:1217](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/dill/_dill.py#line=1216), in save_module_dict(pickler, obj) 1214 if is_dill(pickler, child=False) and pickler._session: 1215 # we only care about session the first pass thru 1216 pickler._first_pass = False -> 1217 StockPickler.save_dict(pickler, obj) 1218 logger.trace(pickler, "# D2") 1219 return File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:990](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=989), in _Pickler.save_dict(self, obj) 987 self.write(MARK + DICT) 989 self.memoize(obj) --> 990 self._batch_setitems(obj.items()) File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\datasets\utils\_dill.py:83](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/datasets/utils/_dill.py#line=82), in Pickler._batch_setitems(self, items) 80 from datasets.fingerprint import Hasher 82 items = sorted(items, key=lambda x: Hasher.hash(x[0])) ---> 83 dill.Pickler._batch_setitems(self, items) File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:1014](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=1013), in _Pickler._batch_setitems(self, items) 1012 for k, v in tmp: 1013 save(k) -> 1014 save(v) 1015 write(SETITEMS) 1016 elif n: [... skipping similar frames: Pickler.save at line 70 (1 times), Pickler.save at line 414 (1 times)] File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:558](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=557), in _Pickler.save(self, obj, save_persistent_id) 556 f = self.dispatch.get(t) 557 if f is not None: --> 558 f(self, obj) # Call unbound method with explicit self 559 return 561 # Check private dispatch table if any, or else 562 # copyreg.dispatch_table File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\dill\_dill.py:1217](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/dill/_dill.py#line=1216), in save_module_dict(pickler, obj) 1214 if is_dill(pickler, child=False) and pickler._session: 1215 # we only care about session the first pass thru 1216 pickler._first_pass = False -> 1217 StockPickler.save_dict(pickler, obj) 1218 logger.trace(pickler, "# D2") 1219 return File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:990](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=989), in _Pickler.save_dict(self, obj) 987 self.write(MARK + DICT) 989 self.memoize(obj) --> 990 self._batch_setitems(obj.items()) File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\datasets\utils\_dill.py:83](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/datasets/utils/_dill.py#line=82), in Pickler._batch_setitems(self, items) 80 from datasets.fingerprint import Hasher 82 items = sorted(items, key=lambda x: Hasher.hash(x[0])) ---> 83 dill.Pickler._batch_setitems(self, items) File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:1014](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=1013), in _Pickler._batch_setitems(self, items) 1012 for k, v in tmp: 1013 save(k) -> 1014 save(v) 1015 write(SETITEMS) 1016 elif n: [... skipping similar frames: Pickler.save at line 70 (1 times), Pickler.save at line 414 (1 times)] File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:601](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=600), in _Pickler.save(self, obj, save_persistent_id) 597 raise PicklingError("Tuple returned by %s must have " 598 "two to six elements" % reduce) 600 # Save the reduce() output and finally memoize the object --> 601 self.save_reduce(obj=obj, *rv) File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:715](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=714), in _Pickler.save_reduce(self, func, args, state, listitems, dictitems, state_setter, obj) 713 if state is not None: 714 if state_setter is None: --> 715 save(state) 716 write(BUILD) 717 else: 718 # If a state_setter is specified, call it instead of load_build 719 # to update obj's with its previous state. 720 # First, push state_setter and its tuple of expected arguments 721 # (obj, state) onto the stack. File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\datasets\utils\_dill.py:70](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/datasets/utils/_dill.py#line=69), in Pickler.save(self, obj, save_persistent_id) 68 if obj_type is FunctionType: 69 obj = getattr(obj, "_torchdynamo_orig_callable", obj) ---> 70 dill.Pickler.save(self, obj, save_persistent_id=save_persistent_id) File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\dill\_dill.py:414](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/dill/_dill.py#line=413), in Pickler.save(self, obj, save_persistent_id) 412 msg = "Can't pickle %s: attribute lookup builtins.generator failed" % GeneratorType 413 raise PicklingError(msg) --> 414 StockPickler.save(self, obj, save_persistent_id) File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:558](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=557), in _Pickler.save(self, obj, save_persistent_id) 556 f = self.dispatch.get(t) 557 if f is not None: --> 558 f(self, obj) # Call unbound method with explicit self 559 return 561 # Check private dispatch table if any, or else 562 # copyreg.dispatch_table File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:920](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=919), in _Pickler.save_tuple(self, obj) 918 write(MARK) 919 for element in obj: --> 920 save(element) 922 if id(obj) in memo: 923 # Subtle. d was not in memo when we entered save_tuple(), so 924 # the process of saving the tuple's elements must have saved (...) 928 # could have been done in the "for element" loop instead, but 929 # recursive tuples are a rare thing. 930 get = self.get(memo[id(obj)][0]) File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\datasets\utils\_dill.py:70](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/datasets/utils/_dill.py#line=69), in Pickler.save(self, obj, save_persistent_id) 68 if obj_type is FunctionType: 69 obj = getattr(obj, "_torchdynamo_orig_callable", obj) ---> 70 dill.Pickler.save(self, obj, save_persistent_id=save_persistent_id) File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\dill\_dill.py:414](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/dill/_dill.py#line=413), in Pickler.save(self, obj, save_persistent_id) 412 msg = "Can't pickle %s: attribute lookup builtins.generator failed" % GeneratorType 413 raise PicklingError(msg) --> 414 StockPickler.save(self, obj, save_persistent_id) File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:558](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=557), in _Pickler.save(self, obj, save_persistent_id) 556 f = self.dispatch.get(t) 557 if f is not None: --> 558 f(self, obj) # Call unbound method with explicit self 559 return 561 # Check private dispatch table if any, or else 562 # copyreg.dispatch_table File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:809](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=808), in _Pickler.save_bytes(self, obj) 806 self.save_reduce(codecs.encode, 807 (str(obj, 'latin1'), 'latin1'), obj=obj) 808 return --> 809 self._save_bytes_no_memo(obj) 810 self.memoize(obj) File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:797](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=796), in _Pickler._save_bytes_no_memo(self, obj) 795 self._write_large_bytes(BINBYTES8 + pack("<Q", n), obj) 796 elif n >= self.framer._FRAME_SIZE_TARGET: --> 797 self._write_large_bytes(BINBYTES + pack("<I", n), obj) 798 else: 799 self.write(BINBYTES + pack("<I", n) + obj) File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:254](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=253), in _Framer.write_large_bytes(self, header, payload) 247 # Perform direct write of the header and payload of the large binary 248 # object. Be careful not to concatenate the header and the payload 249 # prior to calling 'write' as we do not want to allocate a large 250 # temporary bytes object. 251 # We intentionally do not insert a protocol 4 frame opcode to make 252 # it possible to optimize file.read calls in the loader. 253 write(header) --> 254 write(payload) MemoryError: ``` </details> Memory error is an expected type of error in such case, but when I started digging down, I found out that it occurs in a kinda unexpected place - in `create_config_id` function. It tries to hash `config_kwargs_to_add_to_suffix`, including generator function itself. I modified the `BuilderConfig.create_config_id` code like this to check which values are hashed and how much time it takes to hash them and ran it on a toy dataset: ``` print(config_kwargs_to_add_to_suffix) start_time = time.time() if all(isinstance(v, (str, bool, int, float)) for v in config_kwargs_to_add_to_suffix.values()): suffix = ",".join( str(k) + "=" + urllib.parse.quote_plus(str(v)) for k, v in config_kwargs_to_add_to_suffix.items() ) if len(suffix) > 32: # hash if too long suffix = Hasher.hash(config_kwargs_to_add_to_suffix) else: suffix = Hasher.hash(config_kwargs_to_add_to_suffix) end_time = time.time() print(f"Execution time: {end_time - start_time:.4f} seconds") print(suffix) ``` In my case the content of `config_kwargs_to_add_to_suffix` was like this: ``` {'features': {'key': Value(dtype='int64', id=None), 'x': Array3D(shape=(44, 128, 128), dtype='float32', id=None), 'y_class': Array2D(shape=(128, 128), dtype='int32', id=None)}, 'gen_kwargs': None, 'generator': <function generate_tiles.<locals>.dataset_generator at 0x00000139D10D7920>, 'split': NamedSplit('train')} ``` Also I noticed that hashing took a significant amount of time - 43.1482 seconds, while the overall function execution (with data loading, batching and saving dataset) took 2min 45s. The output of `create_config_id` is just a dataset id, so, it is inappropirately large amount of time. But when I added `config_kwargs_to_add_to_suffix.pop("generator", None)`, the hashing took only 0.0060 seconds. Maybe we shouldn't hash the generator function, as it can be really computationally and memory expensive. ### Steps to reproduce the bug This is a simplified example of a workflow I used to generate dataset. But I think that you can use almost any workflow to reproduce that bug. ``` import pystac import pystac_client import planetary_computer import numpy as np import xarray as xr import rioxarray as rxr import dask import xbatcher import datasets # Loading a dataset, in our case - single Landsat image catalog = pystac_client.Client.open( "https://planetarycomputer.microsoft.com/api/stac/v1", modifier=planetary_computer.sign_inplace, ) brazil = [-60.2, -3.31] time_of_interest = "2021-06-01/2021-08-31" search = catalog.search(collections=["landsat-c2-l2"], intersects={"type": "Point", "coordinates": brazil}, datetime=time_of_interest) items = search.item_collection() item = min(items, key=lambda item: pystac.extensions.eo.EOExtension.ext(item).cloud_cover) # Getting x data bands = [] for band in ["red", "green", "blue", "nir08", "coastal", "swir16", "swir22", "lwir11"]: with rxr.open_rasterio(item.assets[band].href, chunks=True, lock=True) as raster: raster = raster.to_dataset('band') #print(raster) raster = raster.rename({1: band}) bands.append(raster) x = xr.merge(bands).squeeze().to_array("band").persist() # Getting y data with rxr.open_rasterio(item.assets['qa_pixel'].href, chunks=True, lock=True) as raster: y = raster.squeeze().persist() # Setting up batches generators x_batches = xbatcher.BatchGenerator(ds=x, input_dims={"x": 256, "y": 256}) y_batches = xbatcher.BatchGenerator(ds=y, input_dims={"x": 256, "y": 256}) # Filtering samples that contain only nodata samples = list(range(len(x_batches))) samples_filtered = [] for i in samples: if not np.array_equal(np.unique(x_batches[i]), np.array([0.])) and not np.array_equal(np.unique(y_batches[i]), np.array([0])): samples_filtered.append(i) samples = samples_filtered np.random.shuffle(samples) # Setting up features feat = { "key": datasets.Value(dtype="int64"), "x": datasets.Array3D(dtype="float32", shape=(4, 256, 256)), "y": datasets.Array2D(dtype="int32", shape=(256, 256)) } feat = datasets.Features(feat) # Setting up a generator def dataset_generator(): for index in samples: data_dict = { "key": index, "x": x_batches[index].data, "y": y_batches[index].data, } yield data_dict # Create dataset ds = datasets.Dataset.from_generator( dataset_generator, features=feat, cache_dir="temp/cache", ) ``` Please, try adding `config_kwargs_to_add_to_suffix.pop("generator", None)` to `BuilderConfig.create_config_id` and then measuring how much time it takes to run ``` if all(isinstance(v, (str, bool, int, float)) for v in config_kwargs_to_add_to_suffix.values()): suffix = ",".join( str(k) + "=" + urllib.parse.quote_plus(str(v)) for k, v in config_kwargs_to_add_to_suffix.items() ) if len(suffix) > 32: # hash if too long suffix = Hasher.hash(config_kwargs_to_add_to_suffix) else: suffix = Hasher.hash(config_kwargs_to_add_to_suffix) ``` code block with and without `config_kwargs_to_add_to_suffix.pop("generator", None)` In my case the difference was 3.3828 seconds without popping generator function and 0.0010 seconds with popping. ### Expected behavior Much faster hashing and no MemoryErrors ### Environment info - `datasets` version: 3.5.0 - Platform: Windows-11-10.0.26100-SP0 - Python version: 3.12.9 - `huggingface_hub` version: 0.30.1 - PyArrow version: 17.0.0 - Pandas version: 2.2.2 - `fsspec` version: 2024.12.0
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7513/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7513/timeline
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7512
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7512/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7512/comments
https://api.github.com/repos/huggingface/datasets/issues/7512/events
https://github.com/huggingface/datasets/issues/7512
2,994,043,544
I_kwDODunzps6ydXqY
7,512
.map() fails if function uses pyvista
{ "avatar_url": "https://avatars.githubusercontent.com/u/11832922?v=4", "events_url": "https://api.github.com/users/el-hult/events{/privacy}", "followers_url": "https://api.github.com/users/el-hult/followers", "following_url": "https://api.github.com/users/el-hult/following{/other_user}", "gists_url": "https://api.github.com/users/el-hult/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/el-hult", "id": 11832922, "login": "el-hult", "node_id": "MDQ6VXNlcjExODMyOTIy", "organizations_url": "https://api.github.com/users/el-hult/orgs", "received_events_url": "https://api.github.com/users/el-hult/received_events", "repos_url": "https://api.github.com/users/el-hult/repos", "site_admin": false, "starred_url": "https://api.github.com/users/el-hult/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/el-hult/subscriptions", "type": "User", "url": "https://api.github.com/users/el-hult", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "I found a similar (?) issue in https://github.com/huggingface/datasets/issues/6435, where someone had issues with forks and CUDA. According to https://huggingface.co/docs/datasets/main/en/process#multiprocessing we should do \n\n```\nfrom multiprocess import set_start_method\nset_start_method(\"spawn\")\n```\n\nto avoid the fork. The updated code\n\n```python\nimport numpy as np\nimport pyvista as pv\nimport datasets\nimport multiprocess\n\ndata = [{\"coords\": np.random.rand(5, 3)} for _ in range(3)]\n\ndef render_point(example):\n plotter = pv.Plotter(off_screen=True)\n cloud = pv.PolyData(example[\"coords\"])\n plotter.add_mesh(cloud)\n img = plotter.screenshot(return_img=True)\n return {\"image\": img}\n\n\n# breaks if num_proc>1\nmultiprocess.set_start_method(\"spawn\")\nds = datasets.Dataset.from_list(data).map(render_point, num_proc=2)\n```\n\ninstead fails with `TypeError: fork_exec() takes exactly 23 arguments (21 given)` which also seems like a bug to me." ]
2025-04-14T19:43:02Z
2025-04-14T20:01:53Z
null
NONE
null
null
null
null
### Describe the bug Using PyVista inside a .map() produces a crash with `objc[78796]: +[NSResponder initialize] may have been in progress in another thread when fork() was called. We cannot safely call it or ignore it in the fork() child process. Crashing instead. Set a breakpoint on objc_initializeAfterForkError to debug.` ### Steps to reproduce the bug Run ```python import numpy as np import pyvista as pv import datasets data = [{"coords": np.random.rand(5, 3)} for _ in range(3)] def render_point(example): plotter = pv.Plotter(off_screen=True) cloud = pv.PolyData(example["coords"]) plotter.add_mesh(cloud) img = plotter.screenshot(return_img=True) return {"image": img} # breaks if num_proc>1 ds = datasets.Dataset.from_list(data).map(render_point, num_proc=2) ``` ### Expected behavior It should work. Just like when I use a process pool to make it work. ```python import numpy as np import pyvista as pv import multiprocessing data = [{"coords": np.random.rand(5, 3)} for _ in range(3)] def render_point(example): plotter = pv.Plotter(off_screen=True) cloud = pv.PolyData(example["coords"]) plotter.add_mesh(cloud) img = plotter.screenshot(return_img=True) return {"image": img} if __name__ == "__main__": with multiprocessing.Pool(processes=2) as pool: results = pool.map(render_point, data) print(results[0]["image"].shape) ``` ### Environment info - `datasets` version: 3.3.2 - Platform: macOS-15.3.2-arm64-arm-64bit - Python version: 3.11.10 - `huggingface_hub` version: 0.28.1 - PyArrow version: 18.1.0 - Pandas version: 2.2.3 - `fsspec` version: 2024.10.0 And then I suppose pyvista info is good to have. ```python import pyvista as pv print(pv.Report()) ``` gives -------------------------------------------------------------------------------- Date: Mon Apr 14 21:42:08 2025 CEST OS : Darwin (macOS 15.3.2) CPU(s) : 10 Machine : arm64 Architecture : 64bit RAM : 32.0 GiB Environment : IPython File system : apfs GPU Vendor : Apple GPU Renderer : Apple M1 Max GPU Version : 4.1 Metal - 89.3 MathText Support : True Python 3.11.10 (main, Oct 7 2024, 23:25:27) [Clang 18.1.8 ] pyvista : 0.44.2 vtk : 9.4.0 numpy : 2.2.2 matplotlib : 3.10.0 scooby : 0.10.0 pooch : 1.8.2 pillow : 11.1.0 imageio : 2.36.1 PyQt5 : 5.15.11 IPython : 8.30.0 scipy : 1.14.1 tqdm : 4.67.1 jupyterlab : 4.3.5 nest_asyncio : 1.6.0 --------------------------------------------------------------------------------
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7512/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7512/timeline
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7510
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7510/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7510/comments
https://api.github.com/repos/huggingface/datasets/issues/7510/events
https://github.com/huggingface/datasets/issues/7510
2,992,131,117
I_kwDODunzps6yWEwt
7,510
Incompatibile dill version (0.3.9) in datasets 2.18.0 - 3.5.0
{ "avatar_url": "https://avatars.githubusercontent.com/u/98061329?v=4", "events_url": "https://api.github.com/users/JGrel/events{/privacy}", "followers_url": "https://api.github.com/users/JGrel/followers", "following_url": "https://api.github.com/users/JGrel/following{/other_user}", "gists_url": "https://api.github.com/users/JGrel/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/JGrel", "id": 98061329, "login": "JGrel", "node_id": "U_kgDOBdhMEQ", "organizations_url": "https://api.github.com/users/JGrel/orgs", "received_events_url": "https://api.github.com/users/JGrel/received_events", "repos_url": "https://api.github.com/users/JGrel/repos", "site_admin": false, "starred_url": "https://api.github.com/users/JGrel/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/JGrel/subscriptions", "type": "User", "url": "https://api.github.com/users/JGrel", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "Hi ! We can bump `dill` to 0.3.9 if we make sure it's deterministic and doesn't break the caching mechanism in `datasets`.\n\nWould you be interested in opening a PR ? Then we can run the CI to see if it works", "Hi!. Yeah I can do it. Should I make any changes besides dill versions?", "There are probably some usage of internal functions from `dill` that we'll need to update in `datasets`\n\nIf you run `pytest tests/test_fingerprint.py` you should already have a good idea of what works and what doesn't.\nBut feel free to open a PR anyway, this way we can run the full CI and see the results\n", "Hi, sorry for no response from my side. I will try to do it today.", "Created pull request: [LINK](https://github.com/huggingface/datasets/pull/7535)\nTried to run tests by using command you have send and got few errors:\n\n![Image](https://github.com/user-attachments/assets/acbf1feb-4dd1-416e-a118-c91abe0d188b)", "Thanks for running the test ! So it appears we have two issues to fix:\n1. 'log' is not defined: it seems an internal `dill` function has disappeared, so we should adapt the `datasets` code that was using it\n2. there are some hashes mismatches, which means `dill` doesn't seem to output the same dump when passed the same ipython function twice, or the same function but located at a different line in a python file" ]
2025-04-14T07:22:44Z
2025-09-15T08:37:49Z
2025-09-15T08:37:49Z
NONE
null
null
null
null
### Describe the bug Datasets 2.18.0 - 3.5.0 has a dependency on dill < 0.3.9. This causes errors with dill >= 0.3.9. Could you please take a look into it and make it compatible? ### Steps to reproduce the bug 1. Install setuptools >= 2.18.0 2. Install dill >=0.3.9 3. Run pip check 4. Output: ERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts. datasets 2.18.0 requires dill<0.3.9,>=0.3.0, but you have dill 0.3.9 which is incompatible. ### Expected behavior Pip install both libraries without any errors ### Environment info Datasets version: 2.18 - 3.5 Python: 3.11
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
{ "+1": 3, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 3, "url": "https://api.github.com/repos/huggingface/datasets/issues/7510/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7510/timeline
null
completed
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7509
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7509/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7509/comments
https://api.github.com/repos/huggingface/datasets/issues/7509/events
https://github.com/huggingface/datasets/issues/7509
2,991,484,542
I_kwDODunzps6yTm5-
7,509
Dataset uses excessive memory when loading files
{ "avatar_url": "https://avatars.githubusercontent.com/u/36810152?v=4", "events_url": "https://api.github.com/users/avishaiElmakies/events{/privacy}", "followers_url": "https://api.github.com/users/avishaiElmakies/followers", "following_url": "https://api.github.com/users/avishaiElmakies/following{/other_user}", "gists_url": "https://api.github.com/users/avishaiElmakies/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/avishaiElmakies", "id": 36810152, "login": "avishaiElmakies", "node_id": "MDQ6VXNlcjM2ODEwMTUy", "organizations_url": "https://api.github.com/users/avishaiElmakies/orgs", "received_events_url": "https://api.github.com/users/avishaiElmakies/received_events", "repos_url": "https://api.github.com/users/avishaiElmakies/repos", "site_admin": false, "starred_url": "https://api.github.com/users/avishaiElmakies/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/avishaiElmakies/subscriptions", "type": "User", "url": "https://api.github.com/users/avishaiElmakies", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "small update: I converted the jsons to parquet and it now works well with 32 proc and the same node. \nI still think this needs to be understood, since json is a very popular and easy-to-use format. ", "Hi ! The JSON loader loads full files in memory, unless they are JSON Lines. In this case it iterates on the JSON Lines in a memory efficient manner.\n\nI know there is an `ijson` package that works similarly but for general JSON files, maybe it can help and remove the need to load full JSON files in memory", "Hi, i understand that json files are probably loaded into memory to read them but aren't they released when we write all the file content into arrow or something? ", "Yes correct, the JSON data is only in memory during the conversion to Arrow. Then, the data is memory mapped from you disk", "so the json files are all loaded into memory before converting to arrow? or do they convert 1 json at a time and then they are realeased?\nI don't understand how 200GB worth of jsons fill a 378GB node's memory.", "Each process converts one JSON file at at time, So the total memory usage is num_proc * json_file_size * overhead, where overhead can be around 2 or 3 for the conversion.\n\nSo it's indeed surprising that you run out of memory. Is the dataset available somewhere ? or a subset maybe ?", "This is a tokenized dataset I created for training a speech-language model with a few features (so it is not private but not easily available). I can send/upload a shard or two and you can copy them however many times you want so you can debug. this should give you something comparable to what I have, but will be easier than creating it yourself. so if you want that, let me know :)", "Maybe you can measure the memory usage when loading 1 file with num_proc=1 ? This should already be helpful.\n\nMemory usage for tokenized data can be bigger than just text, for example the tokens type can be inferred as int64 and the lists offsets are int32", "OK, I will try to do this in the near future. I am a little swamped at the moment. do you have a preferred tool?\n\nalso My data is just list of ints, there is no offsets", "> so the json files are all loaded into memory before converting to arrow? or do they convert 1 json at a time and then they are realeased? I don't understand how 200GB worth of jsons fill a 378GB node's memory.\n\nHello! Is your query solved? I have the same confusion and would like to ask you for advice", "no, the issue is still present. I converted the json files to parquet, but json seems to have a problem.\n\nUnfortunately i didn't have the time to try and profile the memory usage for 1 file. So if you want to do that, it will be great! ", "My dataset is about image descriptions, stored as a 20MB JSON file on disk. However, I need to use the map function to preprocess the images, and after computation, the preprocessed dataset amounts to 70GB. My server has 122GB of RAM, but it still runs out of memory (OOM). This issue is very similar to yours.\n\nAfter some research during this period, I found that the map function does not perform disk mapping in memory while working. Using the command find /DataB/mjx -type f -mmin -10, I discovered that no temporary cache files were modified or created during program execution, meaning the data was continuously loaded into memory. After several attempts, I found that adding the parameter cache_file_name=\"your/path\" to the map function can enable memory-disk mapping. This is a strange setting, but after adding this parameter, the memory usage dropped to only 7GB, indicating that once the writer_batch_size worth of data is read into the disk cache, the corresponding data in memory is released. However, I don't think this is the intended behavior by the author, as memory-disk caching should have been enabled without needing this additional parameter.\n\nFinally, here is my map function call. I hope it helps you.\ntrain_data = train_data.map(process_fun, cache_file_name='./cache_file', remove_columns=['image_name', 'question_type', 'concern', 'question', 'candidate_answers', 'answer'])" ]
2025-04-13T21:09:49Z
2025-04-28T15:18:55Z
null
NONE
null
null
null
null
### Describe the bug Hi I am having an issue when loading a dataset. I have about 200 json files each about 1GB (total about 215GB). each row has a few features which are a list of ints. I am trying to load the dataset using `load_dataset`. The dataset is about 1.5M samples I use `num_proc=32` and a node with 378GB of memory. About a third of the way there I get an OOM. I also saw an old bug with a similar issue, which says to set `writer_batch_size`. I tried to lower it to 10, but it still crashed. I also tried to lower the `num_proc` to 16 and even 8, but still the same issue. ### Steps to reproduce the bug `dataset = load_dataset("json", data_dir=data_config.train_path, num_proc=data_config.num_proc, writer_batch_size=50)["train"]` ### Expected behavior Loading a dataset with more than 100GB to spare should not cause an OOM error. maybe i am missing something but I would love some help. ### Environment info - `datasets` version: 3.5.0 - Platform: Linux-6.6.20-aufs-1-x86_64-with-glibc2.36 - Python version: 3.11.2 - `huggingface_hub` version: 0.29.1 - PyArrow version: 19.0.1 - Pandas version: 2.2.3 - `fsspec` version: 2024.9.0
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7509/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7509/timeline
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7508
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7508/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7508/comments
https://api.github.com/repos/huggingface/datasets/issues/7508/events
https://github.com/huggingface/datasets/issues/7508
2,986,612,934
I_kwDODunzps6yBBjG
7,508
Iterating over Image feature columns is extremely slow
{ "avatar_url": "https://avatars.githubusercontent.com/u/11831521?v=4", "events_url": "https://api.github.com/users/sohamparikh/events{/privacy}", "followers_url": "https://api.github.com/users/sohamparikh/followers", "following_url": "https://api.github.com/users/sohamparikh/following{/other_user}", "gists_url": "https://api.github.com/users/sohamparikh/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/sohamparikh", "id": 11831521, "login": "sohamparikh", "node_id": "MDQ6VXNlcjExODMxNTIx", "organizations_url": "https://api.github.com/users/sohamparikh/orgs", "received_events_url": "https://api.github.com/users/sohamparikh/received_events", "repos_url": "https://api.github.com/users/sohamparikh/repos", "site_admin": false, "starred_url": "https://api.github.com/users/sohamparikh/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sohamparikh/subscriptions", "type": "User", "url": "https://api.github.com/users/sohamparikh", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "Hi ! Could it be because the `Image()` type in dataset does `image = Image.open(image_path)` and also `image.load()` which actually loads the image data in memory ? This is needed to avoid too many open files issues, see https://github.com/huggingface/datasets/issues/3985", "Yes, that seems to be it. For my purposes, I've cast the column to `Image(decode=False)`, and only load the images when necessary, which is much much faster" ]
2025-04-10T19:00:54Z
2025-04-15T17:57:08Z
null
NONE
null
null
null
null
We are trying to load datasets where the image column stores `PIL.PngImagePlugin.PngImageFile` images. However, iterating over these datasets is extremely slow. What I have found: 1. It is the presence of the image column that causes the slowdown. Removing the column from the dataset results in blazingly fast (as expected) times 2. It is ~2x faster to iterate when the column contains a single image as opposed to a list of images i.e., the feature is a Sequence of Image objects. We often need multiple images per sample, so we need to work with a list of images 3. It is ~17x faster to store paths to PNG files and load them using `PIL.Image.open`, as opposed to iterating over a `Dataset` with an Image column, and ~30x faster compared to `Sequence` of `Image`s. See a simple script below with an openly available dataset. It would be great to understand the standard practices for storing and loading multimodal datasets (image + text). https://huggingface.co/docs/datasets/en/image_load seems a bit underdeveloped? (e.g., `dataset.decode` only works with `IterableDataset`, but it's not clear from the doc) Thanks! ```python from datasets import load_dataset, load_from_disk from PIL import Image from pathlib import Path ds = load_dataset("getomni-ai/ocr-benchmark") for idx, sample in enumerate(ds["test"]): image = sample["image"] image.save(f"/tmp/ds_files/images/image_{idx}.png") ds.save_to_disk("/tmp/ds_columns") # Remove the 'image' column ds["test"] = ds["test"].remove_columns(["image"]) # Create image paths for each sample image_paths = [f"images/image_{idx}.png" for idx in range(len(ds["test"]))] # Add the 'image_path' column to the dataset ds["test"] = ds["test"].add_column("image_path", image_paths) # Save the updated dataset ds.save_to_disk("/tmp/ds_files") files_path = Path("/tmp/ds_files") column_path = Path("/tmp/ds_columns") # load and benchmark ds_file = load_from_disk(files_path) ds_column = load_from_disk(column_path) import time images_files = [] start = time.time() for idx in range(len(ds_file["test"])): image_path = files_path / ds_file["test"][idx]["image_path"] image = Image.open(image_path) images_files.append(image) end = time.time() print(f"Time taken to load images from files: {end - start} seconds") # Time taken to load images from files: 1.2364635467529297 seconds images_column = [] start = time.time() for idx in range(len(ds_column["test"])): images_column.append(ds_column["test"][idx]["image"]) end = time.time() print(f"Time taken to load images from columns: {end - start} seconds") # Time taken to load images from columns: 20.49347186088562 seconds ```
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7508/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7508/timeline
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7507
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7507/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7507/comments
https://api.github.com/repos/huggingface/datasets/issues/7507/events
https://github.com/huggingface/datasets/issues/7507
2,984,309,806
I_kwDODunzps6x4PQu
7,507
Front-end statistical data quantity deviation
{ "avatar_url": "https://avatars.githubusercontent.com/u/88258534?v=4", "events_url": "https://api.github.com/users/rangehow/events{/privacy}", "followers_url": "https://api.github.com/users/rangehow/followers", "following_url": "https://api.github.com/users/rangehow/following{/other_user}", "gists_url": "https://api.github.com/users/rangehow/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/rangehow", "id": 88258534, "login": "rangehow", "node_id": "MDQ6VXNlcjg4MjU4NTM0", "organizations_url": "https://api.github.com/users/rangehow/orgs", "received_events_url": "https://api.github.com/users/rangehow/received_events", "repos_url": "https://api.github.com/users/rangehow/repos", "site_admin": false, "starred_url": "https://api.github.com/users/rangehow/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/rangehow/subscriptions", "type": "User", "url": "https://api.github.com/users/rangehow", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "Hi ! the format of this dataset is not supported by the Dataset Viewer. It looks like this dataset was saved using `save_to_disk()` which is meant for local storage / easy reload without compression, not for sharing online." ]
2025-04-10T02:51:38Z
2025-04-15T12:54:51Z
null
NONE
null
null
null
null
### Describe the bug While browsing the dataset at https://huggingface.co/datasets/NeuML/wikipedia-20250123, I noticed that a dataset with nearly 7M entries was estimated to be only 4M in size—almost half the actual amount. According to the post-download loading and the dataset_info (https://huggingface.co/datasets/NeuML/wikipedia-20250123/blob/main/train/dataset_info.json), the true data volume is indeed close to 7M. This significant discrepancy could mislead users when sorting datasets by row count. Why not directly retrieve this information from dataset_info? Not sure if this is the right place to report this bug, but leaving it here for the team's awareness.
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7507/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7507/timeline
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7506
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7506/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7506/comments
https://api.github.com/repos/huggingface/datasets/issues/7506/events
https://github.com/huggingface/datasets/issues/7506
2,981,687,450
I_kwDODunzps6xuPCa
7,506
HfHubHTTPError: 429 Client Error: Too Many Requests for URL when trying to access Fineweb-10BT on 4A100 GPUs using SLURM
{ "avatar_url": "https://avatars.githubusercontent.com/u/66202555?v=4", "events_url": "https://api.github.com/users/calvintanama/events{/privacy}", "followers_url": "https://api.github.com/users/calvintanama/followers", "following_url": "https://api.github.com/users/calvintanama/following{/other_user}", "gists_url": "https://api.github.com/users/calvintanama/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/calvintanama", "id": 66202555, "login": "calvintanama", "node_id": "MDQ6VXNlcjY2MjAyNTU1", "organizations_url": "https://api.github.com/users/calvintanama/orgs", "received_events_url": "https://api.github.com/users/calvintanama/received_events", "repos_url": "https://api.github.com/users/calvintanama/repos", "site_admin": false, "starred_url": "https://api.github.com/users/calvintanama/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/calvintanama/subscriptions", "type": "User", "url": "https://api.github.com/users/calvintanama", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "Hi ! make sure to be logged in with your HF account (e.g. using `huggingface-cli login` or passing `token=` to `load_dataset()`), otherwise you'll get rate limited at one point", "Hey @calvintanama! Just building on what @lhoestq mentioned above — I ran into similar issues in multi-GPU SLURM setups and here’s what worked for me...\n\nThis 429 Client Error: Too Many Requests comes from the Hugging Face Hub’s rate limiting, which restricts unauthenticated or high-volume access (especially in multi-GPU/distributed setups like SLURM).\n\nAs @lhoestq mentioned, the solution is to make sure you are authenticated with the Hugging Face Hub in every process (especially on each GPU/worker node). You can do this by:\n\nRunning huggingface-cli login (interactive)\n\nOr passing your token explicitly:\n\n```python\nload_dataset(\"HuggingFaceFW/fineweb\", token=\"hf_your_token_here\")\n# If you’re using a SLURM cluster, ensure every node/process receives access to the token via env var:\n```\n\n```bash\nexport HF_TOKEN=hf_your_token_here\n```\n\nand then in Python:\n```python\nfrom datasets import load_dataset\nload_dataset(\"HuggingFaceFW/fineweb\", token=os.environ[\"HF_TOKEN\"])\n```\nAlso consider downloading the dataset beforehand with load_dataset(..., streaming=False) and storing it locally if you're repeatedly training with it." ]
2025-04-09T06:32:04Z
2025-06-29T06:04:59Z
null
NONE
null
null
null
null
### Describe the bug I am trying to run some finetunings on 4 A100 GPUs using SLURM using axolotl training framework which in turn uses Huggingface's Trainer and Accelerate on [Fineweb-10BT](https://huggingface.co/datasets/HuggingFaceFW/fineweb), but I end up running into 429 Client Error: Too Many Requests for URL error when I call next(dataloader_iter). Funny is, that I can run some test fine tuning (for just 200 training steps) in 1 A100 GPU using SLURM. Is there any rate limiter set for querying dataset? I could run the fine tuning with the same settings (4 A100 GPUs in SLURM) last month. ### Steps to reproduce the bug You would need a server installed with SLURM 1. Create conda environment 1.1 conda create -n example_env -c conda-forge gxx=11 python=3.10 1.2 conda activate example_env 1.3 pip install torch==2.5.1 torchvision==0.20.1 torchaudio==2.5.1 --index-url https://download.pytorch.org/whl/cu124 1.4 conda install nvidia/label/cuda-12.4.0::cuda-toolkit 1.5 Download flash_attn-2.7.4.post1+cu12torch2.5cxx11abiFALSE-cp310-cp310-linux_x86_64.whl 1.6 pip3 install packaging 1.7 pip3 install ninja 1.8 pip3 install mlflow 1.9 Clone https://github.com/calvintanama/axolotl.git 1.10 `cd` to `axolotl` 1.11 pip3 install -e '.[deepspeed]' 2. Run the training 2.1. Create a folder called `config_run` in axolotl directory 2.2. Copy `config/phi3_pruned_extra_pretrain_22_29_bottleneck_residual_8_a100_4.yaml` to `config_run` 2.3. Change yaml file in the `config_run` accordingly 2.4. Change directory and conda environment name in `jobs/train_phi3_22_29_bottleneck_residual_8_a100_4_temp.sh` 2.5. `jobs/train_phi3_22_29_bottleneck_residual_8_a100_4_temp.sh` ### Expected behavior This should not cause any error, but gotten ``` File "/home/hk-project-test-p0023745/cd7437/miniconda3/envs/llmpruning_train_temp/lib/python3.10/site-packages/accelerate/data_loader.py", line 552, in __iter__ [rank3]: current_batch = next(dataloader_iter) [rank3]: File "/home/hk-project-test-p0023745/cd7437/miniconda3/envs/llmpruning_train_temp/lib/python3.10/site-packages/torch/utils/data/dataloader.py", line 701, in __next__ [rank3]: data = self._next_data() [rank3]: File "/home/hk-project-test-p0023745/cd7437/miniconda3/envs/llmpruning_train_temp/lib/python3.10/site-packages/torch/utils/data/dataloader.py", line 757, in _next_data [rank3]: data = self._dataset_fetcher.fetch(index) # may raise StopIteration [rank3]: File "/home/hk-project-test-p0023745/cd7437/miniconda3/envs/llmpruning_train_temp/lib/python3.10/site-packages/torch/utils/data/_utils/fetch.py", line 33, in fetch [rank3]: data.append(next(self.dataset_iter)) [rank3]: File "/home/hk-project-test-p0023745/cd7437/miniconda3/envs/llmpruning_train_temp/lib/python3.10/site-packages/accelerate/data_loader.py", line 338, in __iter__ [rank3]: for element in self.dataset: [rank3]: File "/home/hk-project-test-p0023745/cd7437/miniconda3/envs/llmpruning_train_temp/lib/python3.10/site-packages/datasets/iterable_dataset.py", line 2266, in __iter__ [rank3]: for key, example in ex_iterable: [rank3]: File "/home/hk-project-test-p0023745/cd7437/miniconda3/envs/llmpruning_train_temp/lib/python3.10/site-packages/datasets/iterable_dataset.py", line 1866, in __iter__ [rank3]: for key, example in self.ex_iterable: [rank3]: File "/home/hk-project-test-p0023745/cd7437/miniconda3/envs/llmpruning_train_temp/lib/python3.10/site-packages/datasets/iterable_dataset.py", line 1084, in __iter__ [rank3]: yield from self._iter() [rank3]: File "/home/hk-project-test-p0023745/cd7437/miniconda3/envs/llmpruning_train_temp/lib/python3.10/site-packages/datasets/iterable_dataset.py", line 1263, in _iter [rank3]: for key, transformed_example in outputs: [rank3]: File "/home/hk-project-test-p0023745/cd7437/miniconda3/envs/llmpruning_train_temp/lib/python3.10/site-packages/datasets/iterable_dataset.py", line 1258, in <genexpr> [rank3]: outputs = ( [rank3]: File "/home/hk-project-test-p0023745/cd7437/miniconda3/envs/llmpruning_train_temp/lib/python3.10/site-packages/datasets/iterable_dataset.py", line 1244, in iter_outputs [rank3]: for i, key_example in inputs_iterator: [rank3]: File "/home/hk-project-test-p0023745/cd7437/miniconda3/envs/llmpruning_train_temp/lib/python3.10/site-packages/datasets/iterable_dataset.py", line 1106, in iter_batched_inputs [rank3]: for key, example in iterator: [rank3]: File "/home/hk-project-test-p0023745/cd7437/miniconda3/envs/llmpruning_train_temp/lib/python3.10/site-packages/datasets/iterable_dataset.py", line 1866, in __iter__ [rank3]: for key, example in self.ex_iterable: [rank3]: File "/home/hk-project-test-p0023745/cd7437/miniconda3/envs/llmpruning_train_temp/lib/python3.10/site-packages/datasets/iterable_dataset.py", line 1535, in __iter__ [rank3]: for x in self.ex_iterable: [rank3]: File "/home/hk-project-test-p0023745/cd7437/miniconda3/envs/llmpruning_train_temp/lib/python3.10/site-packages/datasets/iterable_dataset.py", line 374, in __iter__ [rank3]: for key, pa_table in self.generate_tables_fn(**gen_kwags): [rank3]: File "/home/hk-project-test-p0023745/cd7437/miniconda3/envs/llmpruning_train_temp/lib/python3.10/site-packages/datasets/packaged_modules/parquet/parquet.py", line 90, in _generate_tables [rank3]: if parquet_fragment.row_groups: [rank3]: File "pyarrow/_dataset_parquet.pyx", line 386, in pyarrow._dataset_parquet.ParquetFileFragment.row_groups.__get__ [rank3]: File "pyarrow/_dataset_parquet.pyx", line 393, in pyarrow._dataset_parquet.ParquetFileFragment.metadata.__get__ [rank3]: File "pyarrow/_dataset_parquet.pyx", line 382, in pyarrow._dataset_parquet.ParquetFileFragment.ensure_complete_metadata [rank3]: File "pyarrow/error.pxi", line 89, in pyarrow.lib.check_status [rank3]: File "/home/hk-project-test-p0023745/cd7437/miniconda3/envs/llmpruning_train_temp/lib/python3.10/site-packages/datasets/utils/file_utils.py", line 827, in read_with_retries [rank3]: out = read(*args, **kwargs) [rank3]: File "/home/hk-project-test-p0023745/cd7437/miniconda3/envs/llmpruning_train_temp/lib/python3.10/site-packages/huggingface_hub/hf_file_system.py", line 1013, in read [rank3]: return super().read(length) [rank3]: File "/home/hk-project-test-p0023745/cd7437/miniconda3/envs/llmpruning_train_temp/lib/python3.10/site-packages/fsspec/spec.py", line 1941, in read [rank3]: out = self.cache._fetch(self.loc, self.loc + length) [rank3]: File "/home/hk-project-test-p0023745/cd7437/miniconda3/envs/llmpruning_train_temp/lib/python3.10/site-packages/fsspec/caching.py", line 234, in _fetch [rank3]: self.cache = self.fetcher(start, end) # new block replaces old [rank3]: File "/home/hk-project-test-p0023745/cd7437/miniconda3/envs/llmpruning_train_temp/lib/python3.10/site-packages/huggingface_hub/hf_file_system.py", line 976, in _fetch_range [rank3]: hf_raise_for_status(r) [rank3]: File "/home/hk-project-test-p0023745/cd7437/miniconda3/envs/llmpruning_train_temp/lib/python3.10/site-packages/huggingface_hub/utils/_http.py", line 482, in hf_raise_for_status [rank3]: raise _format(HfHubHTTPError, str(e), response) from e [rank3]: huggingface_hub.errors.HfHubHTTPError: 429 Client Error: Too Many Requests for url: https://huggingface.co/datasets/HuggingFaceFW/fineweb/resolve/0f039043b23fe1d4eed300b504aa4b4a68f1c7ba/sample/10BT/006_00000.parquet ``` ### Environment info - datasets 3.5.0 - torch 2.5.1 - transformers 4.46.2
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7506/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7506/timeline
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7505
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7505/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7505/comments
https://api.github.com/repos/huggingface/datasets/issues/7505/events
https://github.com/huggingface/datasets/issues/7505
2,979,926,156
I_kwDODunzps6xnhCM
7,505
HfHubHTTPError: 403 Forbidden: None. Cannot access content at: https://hf.co/api/s3proxy
{ "avatar_url": "https://avatars.githubusercontent.com/u/1412262?v=4", "events_url": "https://api.github.com/users/hissain/events{/privacy}", "followers_url": "https://api.github.com/users/hissain/followers", "following_url": "https://api.github.com/users/hissain/following{/other_user}", "gists_url": "https://api.github.com/users/hissain/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/hissain", "id": 1412262, "login": "hissain", "node_id": "MDQ6VXNlcjE0MTIyNjI=", "organizations_url": "https://api.github.com/users/hissain/orgs", "received_events_url": "https://api.github.com/users/hissain/received_events", "repos_url": "https://api.github.com/users/hissain/repos", "site_admin": false, "starred_url": "https://api.github.com/users/hissain/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/hissain/subscriptions", "type": "User", "url": "https://api.github.com/users/hissain", "user_view_type": "public" }
[]
open
false
null
[]
null
[]
2025-04-08T14:08:40Z
2025-04-08T14:08:40Z
null
NONE
null
null
null
null
I have already logged in Huggingface using CLI with my valid token. Now trying to download the datasets using following code: from transformers import WhisperProcessor, WhisperForConditionalGeneration, WhisperTokenizer, Trainer, TrainingArguments, DataCollatorForSeq2Seq from datasets import load_dataset, DatasetDict, Audio def load_and_preprocess_dataset(): dataset = load_dataset("mozilla-foundation/common_voice_17_0", "bn") dataset = dataset.remove_columns(["accent", "age", "client_id", "down_votes", "gender", "locale", "segment", "up_votes"]) dataset = dataset.cast_column("audio", Audio(sampling_rate=16000)) dataset = dataset["train"].train_test_split(test_size=0.1) dataset = DatasetDict({ "train": dataset["train"], "test": dataset["test"] }) return dataset load_and_preprocess_dataset() I am getting following error: Downloading data: 100%  25/25 [00:01<00:00, 25.31files/s] --------------------------------------------------------------------------- HTTPError Traceback (most recent call last) File ~/github/bangla-asr/.venv/lib/python3.11/site-packages/huggingface_hub/utils/_http.py:409, in hf_raise_for_status(response, endpoint_name) 408 try: --> 409 response.raise_for_status() 410 except HTTPError as e: File ~/github/bangla-asr/.venv/lib/python3.11/site-packages/requests/models.py:1024, in Response.raise_for_status(self) 1023 if http_error_msg: -> 1024 raise HTTPError(http_error_msg, response=self) HTTPError: 403 Client Error: BlockSIEL for url: https://hf.co/api/s3proxy?GET=https%3A%2F%2Fhf-hub-lfs-us-east-1.s3.us-east-1.amazonaws.com%2Frepos%2Fa3%2F86%2Fa386bf65687d8a6928c1ea57c383aa3faade32f5171150e25af3fc1cfc273db8%2F67f1ac9cabd539bfbff3acbc549b60647833a250dc638866f22bf1b64e68806d%3FX-Amz-Algorithm%3DAWS4-HMAC-SHA256%26X-Amz-Content-Sha256%3DUNSIGNED-PAYLOAD%26X-Amz-Credential%3DAKIA2JU7TKAQLC2QXPN7%252F20250408%252Fus-east-1%252Fs3%252Faws4_request%26X-Amz-Date%3D20250408T134345Z%26X-Amz-Expires%3D3600%26X-Amz-Signature%3D621e731d4fd6d08afbf568379797746ab8e2b853b6728ff5e1122fef6e56880b%26X-Amz-SignedHeaders%3Dhost%26response-content-disposition%3Dinline%253B%2520filename%252A%253DUTF-8%2527%2527bn_validated_1.tar%253B%2520filename%253D%2522bn_validated_1.tar%2522%253B%26response-content-type%3Dapplication%252Fx-tar%26x-id%3DGetObject&HEAD=https%3A%2F%2Fhf-hub-lfs-us-east-1.s3.us-east-1.amazonaws.com%2Frepos%2Fa3%2F86%2Fa386bf65687d8a6928c1ea57c383aa3faade32f5171150e25af3fc1cfc273db8%2F67f1ac9cabd539bfbff3acbc549b60647833a250dc638866f22bf1b64e68806d%3FX-Amz-Algorithm%3DAWS4-HMAC-SHA256%26X-Amz-Content-Sha256%3DUNSIGNED-PAYLOAD%26X-Amz-Credential%3DAKIA2JU7TKAQLC2QXPN7%252F20250408%252Fus-east-1%252Fs3%252Faws4_request%26X-Amz-Date%3D20250408T134345Z%26X-Amz-Expires%3D3600%26X-Amz-Signature%3D15254fb79d30b0dc36b94a28138e675e0e00bb475b8a3ae774418500b095a661%26X-Amz-SignedHeaders%3Dhost&sign=eyJhbGciOiJIUzI1NiJ9.eyJyZWRpcmVjdF9kb21haW4iOiJoZi1odWItbGZzLXVzLWVhc3QtMS5zMy51cy1lYXN0LTEuYW1hem9uYXdzLmNvbSIsImlhdCI6MTc0NDExOTgyNSwiZXhwIjoxNzQ0MjA2MjI1LCJpc3MiOiJodHRwczovL2h1Z2dpbmdmYWNlLmNvIn0.5sJzudFDU3SmOdOLlwmQCOfQFf2r7y9590HoX8WBkRk The above exception was the direct cause of the following exception: HfHubHTTPError Traceback (most recent call last) Cell In[16], line 15 9 dataset = DatasetDict({ 10 "train": dataset["train"], 11 "test": dataset["test"] 12 }) 13 return dataset ---> 15 load_and_preprocess_dataset() 17 # def setup_model(): 18 # processor = WhisperProcessor.from_pretrained("openai/whisper-base") ... 475 range_header = response.request.headers.get("Range") HfHubHTTPError: 403 Forbidden: None. Cannot access content at: https://hf.co/api/s3proxy?GET=https%3A%2F%2Fhf-hub-lfs-us-east-1.s3.us-east-1.amazonaws.com%2Frepos%2Fa3%2F86%2Fa386bf6568724a6928c1ea57c383aa3faade32f5171150e25af3fc1cfc273db8%2F67f1ac9cabd539bfbff3acbc549b60647833a250dc638786f22bf1b64e68806d%3FX-Amz-Algorithm%3DAWS4-HMAC-SHA256%26X-Amz-Content-Sha256%3DUNSIGNED-PAYLOAD%26X-Amz-Credential%3DAKIA2JU7TKAQLC2QXPN7%252F20250408%252Fus-east-1%252Fs3%252Faws4_request%26X-Amz-Date%3D20250408T134345Z%26X-Amz-Expires%3D3600%26X-Amz-Signature%3D621e731d4fd6d08afbf568379797746ab394b853b6728ff5e1122fef6e56880b%26X-Amz-SignedHeaders%3Dhost%26response-content-disposition%3Dinline%253B%2520filename%252A%253DUTF-8%2527%2527bn_validated_1.tar%253B%2520filename%253D%2522bn_validated_1.tar%2522%253B%26response-content-type%3Dapplication%252Fx-tar%26x-id%3DGetObject&HEAD=https%3A%2F%2Fhf-hub-lfs-us-east-1.s3.us-east-1.amazonaws.com%2Frepos%2Fa3%2F86%2Fa386bf65687ab76928c1ea57c383aa3faade32f5171150e25af3fc1cfc273db8%2F67f1ac9cabd539bfbff3acbc549b60647833a250d2338866f222f1b64e68806d%3FX-Amz-Algorithm%3DAWS4-HMAC-SHA256%26X-Amz-Content-Sha256%3DUNSIGNED-PAYLOAD%26X-Amz-Credential%3DAKIA2JU7TKAQLC2QXPN7%252F20250408%252Fus-east-1%252Fs3%252Faws4_request%26X-Amz-Date%3D20250408T134345Z%26X-Amz-Expires%3D3600%26X-Amz-Signature%3D15254fb79d30b0dc36b94a28138e675e0e00bb475b8a3ae774418500b095a661%26X-Amz-SignedHeaders%3Dhost&sign=eyJhbGciOiJIUzI1NiJ9.eyJyZWRpcmVjds9kb21haW4iOiJoZi1odWItbGZzLXVzLWVhc3QtMS5zMy51cy1lYXN0LTEuYW1hem9uYXdzLmNvbSIsImlhdCI6MTc0NDExOT2yNSwiZXhwIjoxNzQ0MjA2MjI1LCJpc3MiOiJodHRwczovL2h1Z2dpbmdmYWNlLmNvIn0.5sJzudFDU3SmOdOLlwmQdOfQFf2r7y9590HoX8WBkRk. Make sure your token has the correct permissions. **What's wrong with the code?** Please note that the error is happening only when I am running from my office network due to probably proxy. Which URL, I need to take a proxy exception?
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7505/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7505/timeline
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7504
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7504/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7504/comments
https://api.github.com/repos/huggingface/datasets/issues/7504/events
https://github.com/huggingface/datasets/issues/7504
2,979,410,641
I_kwDODunzps6xljLR
7,504
BuilderConfig ParquetConfig(...) doesn't have a 'use_auth_token' key.
{ "avatar_url": "https://avatars.githubusercontent.com/u/20015750?v=4", "events_url": "https://api.github.com/users/tteguayco/events{/privacy}", "followers_url": "https://api.github.com/users/tteguayco/followers", "following_url": "https://api.github.com/users/tteguayco/following{/other_user}", "gists_url": "https://api.github.com/users/tteguayco/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/tteguayco", "id": 20015750, "login": "tteguayco", "node_id": "MDQ6VXNlcjIwMDE1NzUw", "organizations_url": "https://api.github.com/users/tteguayco/orgs", "received_events_url": "https://api.github.com/users/tteguayco/received_events", "repos_url": "https://api.github.com/users/tteguayco/repos", "site_admin": false, "starred_url": "https://api.github.com/users/tteguayco/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/tteguayco/subscriptions", "type": "User", "url": "https://api.github.com/users/tteguayco", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "I encountered the same error, have you resolved it?", "Hi ! `use_auth_token` has been deprecated and removed some time ago. You should use `token` instead in `load_dataset()`", "Hi @lhoestq, I'd like to take this up.\n\nAs discussed in #7504, the issue arises when `use_auth_token` is passed to `load_dataset`, which forwards it to the config's `__init__`, where it's no longer a valid key.\n\nTo address this, I’ll intercept and strip `use_auth_token` inside `load_dataset()` (similar to how we handle `trust_remote_code`). A warning will be logged, and users will be encouraged to use `token` instead.\n\nThis avoids breaking older scripts that still use `use_auth_token`." ]
2025-04-08T10:55:03Z
2025-06-28T09:18:09Z
null
NONE
null
null
null
null
### Describe the bug Trying to run the following fine-tuning script (based on this page [here](https://github.com/huggingface/instruction-tuned-sd)): ``` ! accelerate launch /content/instruction-tuned-sd/finetune_instruct_pix2pix.py \ --pretrained_model_name_or_path=${MODEL_ID} \ --dataset_name=${DATASET_NAME} \ --use_ema \ --enable_xformers_memory_efficient_attention \ --resolution=512 --random_flip \ --train_batch_size=2 --gradient_accumulation_steps=4 --gradient_checkpointing \ --max_train_steps=500 \ --checkpointing_steps=25 --checkpoints_total_limit=1 \ --learning_rate=5e-05 --max_grad_norm=1 --lr_warmup_steps=20 \ --conditioning_dropout_prob=0.1 \ --mixed_precision=fp16 \ --seed=42 \ --output_dir=${OUTPUT_DIR} \ --original_image_column=before \ --edit_prompt=prompt \ --edited_image=after ``` but I keep getting the following error: ``` Traceback (most recent call last): File "/content/instruction-tuned-sd/finetune_instruct_pix2pix.py", line 1137, in <module> main() File "/content/instruction-tuned-sd/finetune_instruct_pix2pix.py", line 652, in main dataset = load_dataset( ^^^^^^^^^^^^^ File "/usr/local/lib/python3.11/dist-packages/datasets/load.py", line 2129, in load_dataset builder_instance = load_dataset_builder( ^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.11/dist-packages/datasets/load.py", line 1886, in load_dataset_builder builder_instance: DatasetBuilder = builder_cls( ^^^^^^^^^^^^ File "/usr/local/lib/python3.11/dist-packages/datasets/builder.py", line 342, in __init__ self.config, self.config_id = self._create_builder_config( ^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.11/dist-packages/datasets/builder.py", line 590, in _create_builder_config raise ValueError(f"BuilderConfig {builder_config} doesn't have a '{key}' key.") ValueError: BuilderConfig ParquetConfig(name='default', version=0.0.0, data_dir=None, data_files={'train': ['data/train-*']}, description=None, batch_size=None, columns=None, features=None, filters=None) doesn't have a 'use_auth_token' key. Traceback (most recent call last): File "/usr/local/bin/accelerate", line 10, in <module> sys.exit(main()) ^^^^^^ ``` Any ideas? `datasets` version should be `3.2.0`. ### Steps to reproduce the bug Just running the script above. ### Expected behavior No errors ### Environment info Python 3.11.11 datasets==3.2.0
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7504/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7504/timeline
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7503
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7503/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7503/comments
https://api.github.com/repos/huggingface/datasets/issues/7503/events
https://github.com/huggingface/datasets/issues/7503
2,978,512,625
I_kwDODunzps6xiH7x
7,503
Inconsistency between load_dataset and load_from_disk functionality
{ "avatar_url": "https://avatars.githubusercontent.com/u/60975422?v=4", "events_url": "https://api.github.com/users/zzzzzec/events{/privacy}", "followers_url": "https://api.github.com/users/zzzzzec/followers", "following_url": "https://api.github.com/users/zzzzzec/following{/other_user}", "gists_url": "https://api.github.com/users/zzzzzec/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/zzzzzec", "id": 60975422, "login": "zzzzzec", "node_id": "MDQ6VXNlcjYwOTc1NDIy", "organizations_url": "https://api.github.com/users/zzzzzec/orgs", "received_events_url": "https://api.github.com/users/zzzzzec/received_events", "repos_url": "https://api.github.com/users/zzzzzec/repos", "site_admin": false, "starred_url": "https://api.github.com/users/zzzzzec/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/zzzzzec/subscriptions", "type": "User", "url": "https://api.github.com/users/zzzzzec", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "Hi ! you can find more info here: https://github.com/huggingface/datasets/issues/5044#issuecomment-1263714347\n\n> What's the recommended approach for this use case? Should I manually process my gsm8k-new dataset to make it compatible with load_dataset? Is there a standard way to convert between these formats?\n\nYou can use push_to_hub() or to_parquet() for example", "Hi @zzzzzec & @lhoestq 👋\n\nThanks for raising and discussing this — I've submitted a patch that improves this exact scenario." ]
2025-04-08T03:46:22Z
2025-06-28T08:51:16Z
null
NONE
null
null
null
null
## Issue Description I've encountered confusion when using `load_dataset` and `load_from_disk` in the datasets library. Specifically, when working offline with the gsm8k dataset, I can load it using a local path: ```python import datasets ds = datasets.load_dataset('/root/xxx/datasets/gsm8k', 'main') ``` output: ```text DatasetDict({ train: Dataset({ features: ['question', 'answer'], num_rows: 7473 }) test: Dataset({ features: ['question', 'answer'], num_rows: 1319 }) }) ``` This works as expected. However, after processing the dataset (converting answer format from #### to \boxed{}) ```python import datasets ds = datasets.load_dataset('/root/xxx/datasets/gsm8k', 'main') ds_train = ds['train'] ds_test = ds['test'] import re def convert(sample): solution = sample['answer'] solution = re.sub(r'####\s*(\S+)', r'\\boxed{\1}', solution) sample = { 'problem': sample['question'], 'solution': solution } return sample ds_train = ds_train.map(convert, remove_columns=['question', 'answer']) ds_test = ds_test.map(convert,remove_columns=['question', 'answer']) ``` I saved it using save_to_disk: ```python from datasets.dataset_dict import DatasetDict data_dict = DatasetDict({ 'train': ds_train, 'test': ds_test }) data_dict.save_to_disk('/root/xxx/datasets/gsm8k-new') ``` But now I can only load it using load_from_disk: ```python new_ds = load_from_disk('/root/xxx/datasets/gsm8k-new') ``` output: ```text DatasetDict({ train: Dataset({ features: ['problem', 'solution'], num_rows: 7473 }) test: Dataset({ features: ['problem', 'solution'], num_rows: 1319 }) }) ``` Attempting to use load_dataset produces unexpected results: ```python new_ds = load_dataset('/root/xxx/datasets/gsm8k-new') ``` output: ```text DatasetDict({ train: Dataset({ features: ['_data_files', '_fingerprint', '_format_columns', '_format_kwargs', '_format_type', '_output_all_columns', '_split'], num_rows: 1 }) test: Dataset({ features: ['_data_files', '_fingerprint', '_format_columns', '_format_kwargs', '_format_type', '_output_all_columns', '_split'], num_rows: 1 }) }) ``` Questions 1. Why is it designed such that after using `save_to_disk`, the dataset cannot be loaded with `load_dataset`? For small projects with limited code, it might be relatively easy to change all instances of `load_dataset` to `load_from_disk`. However, for complex frameworks like TRL or lighteval, diving into the framework code to change `load_dataset` to `load_from_disk` is extremely tedious and error-prone. Additionally, `load_from_disk` cannot load datasets directly downloaded from the hub, which means that if you need to modify a dataset, you have to choose between using `load_from_disk` or `load_dataset`. This creates an unnecessary dichotomy in the API and complicates workflow when working with modified datasets. 2. What's the recommended approach for this use case? Should I manually process my gsm8k-new dataset to make it compatible with load_dataset? Is there a standard way to convert between these formats? thanks~
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7503/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7503/timeline
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7502
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7502/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7502/comments
https://api.github.com/repos/huggingface/datasets/issues/7502/events
https://github.com/huggingface/datasets/issues/7502
2,977,453,814
I_kwDODunzps6xeFb2
7,502
`load_dataset` of size 40GB creates a cache of >720GB
{ "avatar_url": "https://avatars.githubusercontent.com/u/61748653?v=4", "events_url": "https://api.github.com/users/pietrolesci/events{/privacy}", "followers_url": "https://api.github.com/users/pietrolesci/followers", "following_url": "https://api.github.com/users/pietrolesci/following{/other_user}", "gists_url": "https://api.github.com/users/pietrolesci/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/pietrolesci", "id": 61748653, "login": "pietrolesci", "node_id": "MDQ6VXNlcjYxNzQ4NjUz", "organizations_url": "https://api.github.com/users/pietrolesci/orgs", "received_events_url": "https://api.github.com/users/pietrolesci/received_events", "repos_url": "https://api.github.com/users/pietrolesci/repos", "site_admin": false, "starred_url": "https://api.github.com/users/pietrolesci/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/pietrolesci/subscriptions", "type": "User", "url": "https://api.github.com/users/pietrolesci", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "Hi ! Parquet is a compressed format. When you load a dataset, it uncompresses the Parquet data into Arrow data on your disk. That's why you can indeed end up with 720GB of uncompressed data on disk. The uncompression is needed to enable performant dataset objects (especially for random access).\n\nTo save some storage you can instead load the dataset with `streaming=True`. This way you get an `IterableDataset` that reads the Parquet data iteratively without ever writing to disk.\n\nPS: `ReadInstruction` might not be implemented for `streaming=True`, if it's the case you can use `ds.take()` and `ds.skip()` instead", "Hi @lhoestq, thanks a lot for your answer. This makes perfect sense. I will try using the streaming mode. Closing the issue." ]
2025-04-07T16:52:34Z
2025-04-15T15:22:12Z
2025-04-15T15:22:11Z
NONE
null
null
null
null
Hi there, I am trying to load a dataset from the Hugging Face Hub and split it into train and validation splits. Somehow, when I try to do it with `load_dataset`, it exhausts my disk quota. So, I tried manually downloading the parquet files from the hub and loading them as follows: ```python ds = DatasetDict( { "train": load_dataset( "parquet", data_dir=f"{local_dir}/{tok}", cache_dir=cache_dir, num_proc=min(12, os.cpu_count()), # type: ignore split=ReadInstruction("train", from_=0, to=NUM_TRAIN, unit="abs"), # type: ignore ), "validation": load_dataset( "parquet", data_dir=f"{local_dir}/{tok}", cache_dir=cache_dir, num_proc=min(12, os.cpu_count()), # type: ignore split=ReadInstruction("train", from_=NUM_TRAIN, unit="abs"), # type: ignore ) } ) ``` which still strangely creates 720GB of cache. In addition, if I remove the raw parquet file folder (`f"{local_dir}/{tok}"` in this example), I am not able to load anything. So, I am left wondering what this cache is doing. Am I missing something? Is there a solution to this problem? Thanks a lot in advance for your help! A related issue: https://github.com/huggingface/transformers/issues/10204#issue-809007443. --- Python: 3.11.11 datasets: 3.5.0
{ "avatar_url": "https://avatars.githubusercontent.com/u/61748653?v=4", "events_url": "https://api.github.com/users/pietrolesci/events{/privacy}", "followers_url": "https://api.github.com/users/pietrolesci/followers", "following_url": "https://api.github.com/users/pietrolesci/following{/other_user}", "gists_url": "https://api.github.com/users/pietrolesci/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/pietrolesci", "id": 61748653, "login": "pietrolesci", "node_id": "MDQ6VXNlcjYxNzQ4NjUz", "organizations_url": "https://api.github.com/users/pietrolesci/orgs", "received_events_url": "https://api.github.com/users/pietrolesci/received_events", "repos_url": "https://api.github.com/users/pietrolesci/repos", "site_admin": false, "starred_url": "https://api.github.com/users/pietrolesci/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/pietrolesci/subscriptions", "type": "User", "url": "https://api.github.com/users/pietrolesci", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7502/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7502/timeline
null
completed
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7501
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7501/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7501/comments
https://api.github.com/repos/huggingface/datasets/issues/7501/events
https://github.com/huggingface/datasets/issues/7501
2,976,721,014
I_kwDODunzps6xbSh2
7,501
Nested Feature raises ArrowNotImplementedError: Unsupported cast using function cast_struct
{ "avatar_url": "https://avatars.githubusercontent.com/u/26623948?v=4", "events_url": "https://api.github.com/users/yaner-here/events{/privacy}", "followers_url": "https://api.github.com/users/yaner-here/followers", "following_url": "https://api.github.com/users/yaner-here/following{/other_user}", "gists_url": "https://api.github.com/users/yaner-here/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/yaner-here", "id": 26623948, "login": "yaner-here", "node_id": "MDQ6VXNlcjI2NjIzOTQ4", "organizations_url": "https://api.github.com/users/yaner-here/orgs", "received_events_url": "https://api.github.com/users/yaner-here/received_events", "repos_url": "https://api.github.com/users/yaner-here/repos", "site_admin": false, "starred_url": "https://api.github.com/users/yaner-here/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/yaner-here/subscriptions", "type": "User", "url": "https://api.github.com/users/yaner-here", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "Solved by the default `load_dataset(features)` parameters. Do not use `Sequence` for the `list` in `list[any]` json schema, just simply use `[]`. For example, `\"b\": Sequence({...})` fails but `\"b\": [{...}]` works fine." ]
2025-04-07T12:35:39Z
2025-04-07T12:43:04Z
2025-04-07T12:43:03Z
NONE
null
null
null
null
### Describe the bug `datasets.Features` seems to be unable to handle json file that contains fields of `list[dict]`. ### Steps to reproduce the bug ```json // test.json {"a": 1, "b": [{"c": 2, "d": 3}, {"c": 4, "d": 5}]} {"a": 5, "b": [{"c": 7, "d": 8}, {"c": 9, "d": 10}]} ``` ```python import json from datasets import Dataset, Features, Value, Sequence, load_dataset annotation_feature = Features({ "a": Value("int32"), "b": Sequence({ "c": Value("int32"), "d": Value("int32"), }), }) annotation_dataset = load_dataset( "json", data_files="test.json", features=annotation_feature ) ``` ``` ArrowNotImplementedError: Unsupported cast from list<item: struct<c: int32, d: int32>> to struct using function cast_struct The above exception was the direct cause of the following exception: DatasetGenerationError Traceback (most recent call last) Cell In[46], line 11 2 from datasets import Dataset, Features, Value, Sequence, load_dataset 4 annotation_feature = Features({ 5 "a": Value("int32"), 6 "b": Sequence({ (...) 9 }), 10 }) ---> 11 annotation_dataset = load_dataset( 12 "json", 13 data_files="test.json", 14 features=annotation_feature 15 ) ``` ### Expected behavior A `datasets.Datasets` instance should be initialized. ### Environment info - `datasets` version: 3.5.0 - Platform: Linux-6.11.0-21-generic-x86_64-with-glibc2.39 - Python version: 3.11.11 - `huggingface_hub` version: 0.30.1 - PyArrow version: 19.0.1 - Pandas version: 2.2.3 - `fsspec` version: 2024.12.0
{ "avatar_url": "https://avatars.githubusercontent.com/u/26623948?v=4", "events_url": "https://api.github.com/users/yaner-here/events{/privacy}", "followers_url": "https://api.github.com/users/yaner-here/followers", "following_url": "https://api.github.com/users/yaner-here/following{/other_user}", "gists_url": "https://api.github.com/users/yaner-here/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/yaner-here", "id": 26623948, "login": "yaner-here", "node_id": "MDQ6VXNlcjI2NjIzOTQ4", "organizations_url": "https://api.github.com/users/yaner-here/orgs", "received_events_url": "https://api.github.com/users/yaner-here/received_events", "repos_url": "https://api.github.com/users/yaner-here/repos", "site_admin": false, "starred_url": "https://api.github.com/users/yaner-here/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/yaner-here/subscriptions", "type": "User", "url": "https://api.github.com/users/yaner-here", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7501/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7501/timeline
null
completed
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7500
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7500/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7500/comments
https://api.github.com/repos/huggingface/datasets/issues/7500/events
https://github.com/huggingface/datasets/issues/7500
2,974,841,921
I_kwDODunzps6xUHxB
7,500
Make `with_format` correctly indicate that a `Dataset` is compatible with PyTorch's `Dataset` class
{ "avatar_url": "https://avatars.githubusercontent.com/u/3817460?v=4", "events_url": "https://api.github.com/users/benglewis/events{/privacy}", "followers_url": "https://api.github.com/users/benglewis/followers", "following_url": "https://api.github.com/users/benglewis/following{/other_user}", "gists_url": "https://api.github.com/users/benglewis/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/benglewis", "id": 3817460, "login": "benglewis", "node_id": "MDQ6VXNlcjM4MTc0NjA=", "organizations_url": "https://api.github.com/users/benglewis/orgs", "received_events_url": "https://api.github.com/users/benglewis/received_events", "repos_url": "https://api.github.com/users/benglewis/repos", "site_admin": false, "starred_url": "https://api.github.com/users/benglewis/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/benglewis/subscriptions", "type": "User", "url": "https://api.github.com/users/benglewis", "user_view_type": "public" }
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
open
false
null
[]
null
[ "Does the torch `DataLoader` really require the dataset to be a subclass of `torch.utils.data.Dataset` ? Or is there a simpler type we could use ?\n\nPS: also note that a dataset without `with_format()` can also be used in a torch `DataLoader` . Calling `with_format(\"torch\")` simply makes the output of the dataset torch Tensors in an efficient way." ]
2025-04-06T09:56:09Z
2025-04-15T12:57:39Z
null
NONE
null
null
null
null
### Feature request Currently `datasets` does not correctly indicate to the Python type-checker (e.g. `pyright` / `Pylance`) that the output of `with_format` is compatible with PyTorch's `Dataloader` since it does not indicate that the HuggingFace `Dataset` is compatible with the PyTorch `Dataset` class. It would be great if we could get the typing to work nicely. ### Motivation To avoid casting types in our Python code. ### Your contribution I would be happy to contribute a PR if this is something that may be accepted and could work with the current approach. This doesn't have to be for just PyTorch, but I imagine that the same thing would be useful for `tensorflow` and such, but we only have a need for PyTorch at this stage.
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7500/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7500/timeline
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7498
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7498/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7498/comments
https://api.github.com/repos/huggingface/datasets/issues/7498/events
https://github.com/huggingface/datasets/issues/7498
2,969,218,273
I_kwDODunzps6w-qzh
7,498
Extreme memory bandwidth.
{ "avatar_url": "https://avatars.githubusercontent.com/u/185079645?v=4", "events_url": "https://api.github.com/users/J0SZ/events{/privacy}", "followers_url": "https://api.github.com/users/J0SZ/followers", "following_url": "https://api.github.com/users/J0SZ/following{/other_user}", "gists_url": "https://api.github.com/users/J0SZ/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/J0SZ", "id": 185079645, "login": "J0SZ", "node_id": "U_kgDOCwgXXQ", "organizations_url": "https://api.github.com/users/J0SZ/orgs", "received_events_url": "https://api.github.com/users/J0SZ/received_events", "repos_url": "https://api.github.com/users/J0SZ/repos", "site_admin": false, "starred_url": "https://api.github.com/users/J0SZ/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/J0SZ/subscriptions", "type": "User", "url": "https://api.github.com/users/J0SZ", "user_view_type": "public" }
[]
open
false
null
[]
null
[]
2025-04-03T11:09:08Z
2025-04-03T11:11:22Z
null
NONE
null
null
null
null
### Describe the bug When I use hf datasets on 4 GPU with 40 workers I get some extreme memory bandwidth of constant ~3GB/s. However, if I wrap the dataset in `IterableDataset`, this issue is gone and the data also loads way faster (4x faster training on 1 worker). It seems like the workers don't share memory and basically duplicate the data 4x40. ### Steps to reproduce the bug Trainer arguments: ``` dataloader_pin_memory=True, dataloader_num_workers=40, dataloader_prefetch_factor=2, dataloader_persistent_workers=True, ``` Call trainer: ``` trainer = Trainer( model=model, args=train_args, train_dataset=load_from_disk('..').with_fromat('torch'), ) ``` The dataset has 600GB and consists of 1225 files. ### Expected behavior The optimal bandwidth should be 100MB/s to keep up with GPU. ### Environment info Linux Python 3.11 datasets==3.2.0
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7498/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7498/timeline
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7497
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7497/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7497/comments
https://api.github.com/repos/huggingface/datasets/issues/7497/events
https://github.com/huggingface/datasets/issues/7497
2,968,553,693
I_kwDODunzps6w8Ijd
7,497
How to convert videos to images?
{ "avatar_url": "https://avatars.githubusercontent.com/u/171649931?v=4", "events_url": "https://api.github.com/users/Loki-Lu/events{/privacy}", "followers_url": "https://api.github.com/users/Loki-Lu/followers", "following_url": "https://api.github.com/users/Loki-Lu/following{/other_user}", "gists_url": "https://api.github.com/users/Loki-Lu/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/Loki-Lu", "id": 171649931, "login": "Loki-Lu", "node_id": "U_kgDOCjsriw", "organizations_url": "https://api.github.com/users/Loki-Lu/orgs", "received_events_url": "https://api.github.com/users/Loki-Lu/received_events", "repos_url": "https://api.github.com/users/Loki-Lu/repos", "site_admin": false, "starred_url": "https://api.github.com/users/Loki-Lu/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Loki-Lu/subscriptions", "type": "User", "url": "https://api.github.com/users/Loki-Lu", "user_view_type": "public" }
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
open
false
null
[]
null
[ "Hi ! there is some documentation here on how to read video frames: https://huggingface.co/docs/datasets/video_load" ]
2025-04-03T07:08:39Z
2025-04-15T12:35:15Z
null
NONE
null
null
null
null
### Feature request Does someone know how to return the images from videos? ### Motivation I am trying to use openpi(https://github.com/Physical-Intelligence/openpi) to finetune my Lerobot dataset(V2.0 and V2.1). I find that although the codedaset is v2.0, they are different. It seems like Lerobot V2.0 has two version, one is data include images infos and another one is separate to data and videos. Does someone know how to return the images from videos?
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7497/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7497/timeline
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7496
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7496/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7496/comments
https://api.github.com/repos/huggingface/datasets/issues/7496/events
https://github.com/huggingface/datasets/issues/7496
2,967,345,522
I_kwDODunzps6w3hly
7,496
Json builder: Allow features to override problematic Arrow types
{ "avatar_url": "https://avatars.githubusercontent.com/u/1017189?v=4", "events_url": "https://api.github.com/users/edmcman/events{/privacy}", "followers_url": "https://api.github.com/users/edmcman/followers", "following_url": "https://api.github.com/users/edmcman/following{/other_user}", "gists_url": "https://api.github.com/users/edmcman/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/edmcman", "id": 1017189, "login": "edmcman", "node_id": "MDQ6VXNlcjEwMTcxODk=", "organizations_url": "https://api.github.com/users/edmcman/orgs", "received_events_url": "https://api.github.com/users/edmcman/received_events", "repos_url": "https://api.github.com/users/edmcman/repos", "site_admin": false, "starred_url": "https://api.github.com/users/edmcman/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/edmcman/subscriptions", "type": "User", "url": "https://api.github.com/users/edmcman", "user_view_type": "public" }
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
open
false
null
[]
null
[ "Hi ! It would be cool indeed, currently the JSON data are generally loaded here: \n\nhttps://github.com/huggingface/datasets/blob/90e5bf8a8599b625d6103ee5ac83b98269991141/src/datasets/packaged_modules/json/json.py#L137-L140\n\nMaybe we can pass a Arrow `schema` to avoid errors ?" ]
2025-04-02T19:27:16Z
2025-04-15T13:06:09Z
null
NONE
null
null
null
null
### Feature request In the JSON builder, use explicitly requested feature types before or while converting to Arrow. ### Motivation Working with JSON datasets is really hard because of Arrow. At the very least, it seems like it should be possible to work-around these problems by explicitly setting problematic columns's types. But it seems like this is not possible because the features are only used *after* converting to arrow. Here's a simple example where the Arrow error could potentially be avoided by converting the column to a string: https://colab.research.google.com/drive/16QHRdbUwKSrpwVfGwu8V8AHr8v2dv0dt?usp=sharing ### Your contribution Maybe with some guidance. I'm not very familiar with arrow or pandas.
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7496/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7496/timeline
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7495
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7495/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7495/comments
https://api.github.com/repos/huggingface/datasets/issues/7495/events
https://github.com/huggingface/datasets/issues/7495
2,967,034,060
I_kwDODunzps6w2VjM
7,495
Columns in the dataset obtained though load_dataset do not correspond to the one in the dataset viewer since 3.4.0
{ "avatar_url": "https://avatars.githubusercontent.com/u/48770768?v=4", "events_url": "https://api.github.com/users/bruno-hays/events{/privacy}", "followers_url": "https://api.github.com/users/bruno-hays/followers", "following_url": "https://api.github.com/users/bruno-hays/following{/other_user}", "gists_url": "https://api.github.com/users/bruno-hays/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/bruno-hays", "id": 48770768, "login": "bruno-hays", "node_id": "MDQ6VXNlcjQ4NzcwNzY4", "organizations_url": "https://api.github.com/users/bruno-hays/orgs", "received_events_url": "https://api.github.com/users/bruno-hays/received_events", "repos_url": "https://api.github.com/users/bruno-hays/repos", "site_admin": false, "starred_url": "https://api.github.com/users/bruno-hays/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/bruno-hays/subscriptions", "type": "User", "url": "https://api.github.com/users/bruno-hays", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "Hi, the dataset viewer shows all the possible columns and their types, but `load_dataset()` iterates through all the columns that you defined. It seems that you only have one column (‘audio’) defined in your dataset because when I ran `print(ds.column_names)`, the only name I got was “audio”. You need to clearly define all the other features of the dataset as columns to enable your original code to work. Furthermore, you can run this code to print out all the features of your dataset: \n```python\nfrom datasets import load_dataset_builder\nds_builder = load_dataset_builder(\"BrunoHays/Accueil_UBS\")\nprint(ds_builder.info.features)\n```\n", "@phoebecd \nGood catch, even in datasets<3.4.0, the only feature is \"audio\".\nThis datasets follows the [audio folder](https://huggingface.co/docs/datasets/en/audio_dataset#audiofolder) structure with metadata.csv.\nMaybe I missed something or there is a bug when having and audio_folder with a metadata file\n\nWhat do you think @lhoestq ?", "I opened a PR to fix the issue :) https://huggingface.co/datasets/BrunoHays/Accueil_UBS/discussions/2\n\nWe expect the metadata file to be in the <split>/ folder now to allow one CSV metadata file per split. But in the PR I just added a manual configuration instead of moving the file and updating all the relative paths it contains." ]
2025-04-02T17:01:11Z
2025-07-02T23:24:57Z
2025-07-02T23:24:57Z
CONTRIBUTOR
null
null
null
null
### Describe the bug I have noticed that on my dataset named [BrunoHays/Accueil_UBS](https://huggingface.co/datasets/BrunoHays/Accueil_UBS), since the version 3.4.0, every column except audio is missing when I load the dataset. Interestingly, the dataset viewer still shows the correct columns ### Steps to reproduce the bug ```python from datasets import load_dataset ds = load_dataset("BrunoHays/Accueil_UBS", streaming=True) print(next(iter(ds["test"])).keys()) ``` With datasets >= 3.4.0: -> dict_keys(['audio']) With datasets == 3.3.2: -> dict_keys(['audio', 'id', 'speaker', 'sentence', 'raw_sentence', 'start_timestamp', 'end_timestamp', 'overlap']) ### Expected behavior All the columns should be present ### Environment info - `datasets` version: 3.3.2 - Platform: macOS-14.6.1-x86_64-i386-64bit - Python version: 3.10.15 - `huggingface_hub` version: 0.30.1 - PyArrow version: 16.1.0 - Pandas version: 1.5.3 - `fsspec` version: 2023.10.0
{ "avatar_url": "https://avatars.githubusercontent.com/u/48770768?v=4", "events_url": "https://api.github.com/users/bruno-hays/events{/privacy}", "followers_url": "https://api.github.com/users/bruno-hays/followers", "following_url": "https://api.github.com/users/bruno-hays/following{/other_user}", "gists_url": "https://api.github.com/users/bruno-hays/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/bruno-hays", "id": 48770768, "login": "bruno-hays", "node_id": "MDQ6VXNlcjQ4NzcwNzY4", "organizations_url": "https://api.github.com/users/bruno-hays/orgs", "received_events_url": "https://api.github.com/users/bruno-hays/received_events", "repos_url": "https://api.github.com/users/bruno-hays/repos", "site_admin": false, "starred_url": "https://api.github.com/users/bruno-hays/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/bruno-hays/subscriptions", "type": "User", "url": "https://api.github.com/users/bruno-hays", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7495/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7495/timeline
null
completed
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7494
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7494/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7494/comments
https://api.github.com/repos/huggingface/datasets/issues/7494/events
https://github.com/huggingface/datasets/issues/7494
2,965,347,685
I_kwDODunzps6wv51l
7,494
Broken links in pdf loading documentation
{ "avatar_url": "https://avatars.githubusercontent.com/u/75789232?v=4", "events_url": "https://api.github.com/users/VyoJ/events{/privacy}", "followers_url": "https://api.github.com/users/VyoJ/followers", "following_url": "https://api.github.com/users/VyoJ/following{/other_user}", "gists_url": "https://api.github.com/users/VyoJ/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/VyoJ", "id": 75789232, "login": "VyoJ", "node_id": "MDQ6VXNlcjc1Nzg5MjMy", "organizations_url": "https://api.github.com/users/VyoJ/orgs", "received_events_url": "https://api.github.com/users/VyoJ/received_events", "repos_url": "https://api.github.com/users/VyoJ/repos", "site_admin": false, "starred_url": "https://api.github.com/users/VyoJ/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/VyoJ/subscriptions", "type": "User", "url": "https://api.github.com/users/VyoJ", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "thanks for reporting ! I fixed the links, the docs will be updated in the next release" ]
2025-04-02T06:45:22Z
2025-04-15T13:36:25Z
2025-04-15T13:36:04Z
NONE
null
null
null
null
### Describe the bug Hi, just a couple of small issues I ran into while reading the docs for [loading pdf data](https://huggingface.co/docs/datasets/main/en/document_load): 1. The link for the [`Create a pdf dataset`](https://huggingface.co/docs/datasets/main/en/document_load#pdffolder) points to https://huggingface.co/docs/datasets/main/en/pdf_dataset instead of https://huggingface.co/docs/datasets/main/en/document_dataset and hence gives a 404 error. 2. At the top of the page, it's mentioned that to work with pdf datasets we need to have the `pdfplumber` package installed but the link to its installation guide points to `pytorch/vision` [installation instructions](https://github.com/pytorch/vision#installation) instead of `pdfplumber`'s [guide](https://github.com/jsvine/pdfplumber#installation) I love the work on enabling pdf dataset support and these small tweaks would help everyone navigate the docs better. Thanks! ### Steps to reproduce the bug The issue is on the [Load Document Data](https://huggingface.co/docs/datasets/main/en/document_load) page of the datasets docs. ### Expected behavior 1. For solving the first issue, I went through the [source .mdx code](https://github.com/huggingface/datasets/blob/main/docs/source/document_load.mdx?plain=1#L188) of the datasets docs and found that the link is pointing to `./pdf_dataset` instead of `./document_dataset` 2. For the second issue, I went through the [source .mdx code](https://github.com/huggingface/datasets/blob/main/docs/source/document_load.mdx?plain=1#L13) of the datasets docs and found that the link is `pytorch/vision` [installation instructions](https://github.com/pytorch/vision#installation) instead of `pdfplumber`'s [guide](https://github.com/jsvine/pdfplumber#installation) Just replacing these two links should fix the bugs ### Environment info datasets v3.5.0 (main at the time of writing)
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7494/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7494/timeline
null
completed
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7493
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7493/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7493/comments
https://api.github.com/repos/huggingface/datasets/issues/7493/events
https://github.com/huggingface/datasets/issues/7493
2,964,025,179
I_kwDODunzps6wq29b
7,493
push_to_hub does not upload videos
{ "avatar_url": "https://avatars.githubusercontent.com/u/9339403?v=4", "events_url": "https://api.github.com/users/DominikVincent/events{/privacy}", "followers_url": "https://api.github.com/users/DominikVincent/followers", "following_url": "https://api.github.com/users/DominikVincent/following{/other_user}", "gists_url": "https://api.github.com/users/DominikVincent/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/DominikVincent", "id": 9339403, "login": "DominikVincent", "node_id": "MDQ6VXNlcjkzMzk0MDM=", "organizations_url": "https://api.github.com/users/DominikVincent/orgs", "received_events_url": "https://api.github.com/users/DominikVincent/received_events", "repos_url": "https://api.github.com/users/DominikVincent/repos", "site_admin": false, "starred_url": "https://api.github.com/users/DominikVincent/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/DominikVincent/subscriptions", "type": "User", "url": "https://api.github.com/users/DominikVincent", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "Hi ! the `Video` type is still experimental, and in particular `push_to_hub` doesn't upload videos at the moment (only the paths).\n\nThere is an open question to either upload the videos inside the Parquet files, or rather have them as separate files (which is great to enable remote seeking/streaming)", "im having the same issue (btw i mistook this to be xet error https://huggingface.co/spaces/xet-team/README/discussions/4 )\n\n@jsulz suggested me to use `upload_folder` but it exceeds hf limits (>10k files per folder and >100k files in total)\n\nfrom my reading of the docs, in my case i have to save as either parquet or webdataset and then use `upload_folder`\n\ni tried `ds.to_parquet(\"...\")` but the parquet file also doesnt contain video, as of `datasets` v4.0\n\nso i think the only workaround for my case is webdataset", "in that case you can create a VideoFolder dataset instead, see the docs at http://huggingface.co/docs/datasets/video_dataset#videofolder" ]
2025-04-01T17:00:20Z
2025-09-02T10:32:36Z
null
NONE
null
null
null
null
### Describe the bug Hello, I would like to upload a video dataset (some .mp4 files and some segments within them), i.e. rows correspond to subsequences from videos. Videos might be referenced by several rows. I created a dataset locally and it references the videos and the video readers can read them correctly. I use push_to_hub() to upload the dataset to the hub. Expectation: A user uses `load_dataset` and can load the videos. However, the videos seem to be just referenced via paths on the computer and not uploaded to the hub. Therefore a target user cannot load the videos in the dataset. ### Steps to reproduce the bug 1. create a video dataset with paths e.g. { ["videos"]: [path1, path2, ...]} 2. dataset.push_to_hub 3. on a different computer (or same pc if relative paths are used in a different folder): ``` dataset = load_dataset("siplab/egosim", split="train") video = dataset[0]["video_head"] ``` 3. will fail ### Expected behavior Expectation: A user uses `load_dataset` and can load the videos. ### Environment info datasets 3.1.0 Python 3.8.18
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7493/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7493/timeline
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7486
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7486/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7486/comments
https://api.github.com/repos/huggingface/datasets/issues/7486/events
https://github.com/huggingface/datasets/issues/7486
2,954,042,179
I_kwDODunzps6wExtD
7,486
`shared_datadir` fixture is missing
{ "avatar_url": "https://avatars.githubusercontent.com/u/1289205?v=4", "events_url": "https://api.github.com/users/lahwaacz/events{/privacy}", "followers_url": "https://api.github.com/users/lahwaacz/followers", "following_url": "https://api.github.com/users/lahwaacz/following{/other_user}", "gists_url": "https://api.github.com/users/lahwaacz/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lahwaacz", "id": 1289205, "login": "lahwaacz", "node_id": "MDQ6VXNlcjEyODkyMDU=", "organizations_url": "https://api.github.com/users/lahwaacz/orgs", "received_events_url": "https://api.github.com/users/lahwaacz/received_events", "repos_url": "https://api.github.com/users/lahwaacz/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lahwaacz/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lahwaacz/subscriptions", "type": "User", "url": "https://api.github.com/users/lahwaacz", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "OK I was missing the `pytest-datadir` package. Sorry for the noise!" ]
2025-03-27T18:17:12Z
2025-03-27T19:49:11Z
2025-03-27T19:49:10Z
NONE
null
null
null
null
### Describe the bug Running the tests for the latest release fails due to missing `shared_datadir` fixture. ### Steps to reproduce the bug Running `pytest` while building a package for Arch Linux leads to these errors: ``` ==================================== ERRORS ==================================== _________ ERROR at setup of test_pdf_feature_encode_example[<lambda>1] _________ [gw44] linux -- Python 3.13.2 /build/python-datasets/src/datasets-3.5.0/test-env/bin/python file /build/python-datasets/src/datasets-3.5.0/tests/features/test_pdf.py, line 8 @require_pdfplumber @pytest.mark.parametrize( "build_example", [ lambda pdf_path: pdf_path, lambda pdf_path: open(pdf_path, "rb").read(), lambda pdf_path: {"path": pdf_path}, lambda pdf_path: {"path": pdf_path, "bytes": None}, lambda pdf_path: {"path": pdf_path, "bytes": open(pdf_path, "rb").read()}, lambda pdf_path: {"path": None, "bytes": open(pdf_path, "rb").read()}, lambda pdf_path: {"bytes": open(pdf_path, "rb").read()}, ], ) def test_pdf_feature_encode_example(shared_datadir, build_example): E fixture 'shared_datadir' not found > available fixtures: _hf_gated_dataset_repo_txt_data, arrow_file, arrow_path, audio_file, bz2_csv_path, bz2_file, cache, capfd, capfdbinary, caplog, capsys, capsysbinary, ci_hfh_hf_hub_url, ci_hub_config, cleanup_repo, csv2_path, csv_path, data_dir_with_hidden_files, dataset, dataset_dict, disable_implicit_token, disable_tqdm_output, doctest_namespace, geoparquet_path, gz_file, hf_api, hf_gated_dataset_repo_txt_data, hf_private_dataset_repo_txt_data, hf_private_dataset_repo_txt_data_, hf_private_dataset_repo_zipped_img_data, hf_private_dataset_repo_zipped_img_data_, hf_private_dataset_repo_zipped_txt_data, hf_private_dataset_repo_zipped_txt_data_, hf_token, image_file, json_dict_of_lists_path, json_list_of_dicts_path, jsonl2_path, jsonl_312_path, jsonl_gz_path, jsonl_path, jsonl_str_path, lz4_file, mock_fsspec, mockfs, monkeypatch, parquet_path, pytestconfig, record_property, record_testsuite_property, record_xml_attribute, recwarn, set_ci_hub_access_token, set_sqlalchemy_silence_uber_warning, set_test_cache_config, set_update_download_counts_to_false, seven_zip_file, sqlite_path, tar_file, tar_jsonl_path, tar_nested_jsonl_path, temporary_repo, tensor_file, testrun_uid, text2_path, text_dir, text_dir_with_unsupported_extension, text_file, text_file_content, text_gz_path, text_path, text_path_with_unicode_new_lines, tmp_path, tmp_path_factory, tmpdir, tmpdir_factory, tmpfs, worker_id, xml_file, xz_file, zero_time_out_for_remote_code, zip_csv_path, zip_csv_with_dir_path, zip_file, zip_image_path, zip_jsonl_path, zip_jsonl_with_dir_path, zip_nested_jsonl_path, zip_text_path, zip_text_with_dir_path, zip_unsupported_ext_path, zip_uppercase_csv_path, zstd_file > use 'pytest --fixtures [testpath]' for help on them. /build/python-datasets/src/datasets-3.5.0/tests/features/test_pdf.py:8 _________ ERROR at setup of test_pdf_feature_encode_example[<lambda>2] _________ [gw44] linux -- Python 3.13.2 /build/python-datasets/src/datasets-3.5.0/test-env/bin/python file /build/python-datasets/src/datasets-3.5.0/tests/features/test_pdf.py, line 8 @require_pdfplumber @pytest.mark.parametrize( "build_example", [ lambda pdf_path: pdf_path, lambda pdf_path: open(pdf_path, "rb").read(), lambda pdf_path: {"path": pdf_path}, lambda pdf_path: {"path": pdf_path, "bytes": None}, lambda pdf_path: {"path": pdf_path, "bytes": open(pdf_path, "rb").read()}, lambda pdf_path: {"path": None, "bytes": open(pdf_path, "rb").read()}, lambda pdf_path: {"bytes": open(pdf_path, "rb").read()}, ], ) def test_pdf_feature_encode_example(shared_datadir, build_example): E fixture 'shared_datadir' not found > available fixtures: _hf_gated_dataset_repo_txt_data, arrow_file, arrow_path, audio_file, bz2_csv_path, bz2_file, cache, capfd, capfdbinary, caplog, capsys, capsysbinary, ci_hfh_hf_hub_url, ci_hub_config, cleanup_repo, csv2_path, csv_path, data_dir_with_hidden_files, dataset, dataset_dict, disable_implicit_token, disable_tqdm_output, doctest_namespace, geoparquet_path, gz_file, hf_api, hf_gated_dataset_repo_txt_data, hf_private_dataset_repo_txt_data, hf_private_dataset_repo_txt_data_, hf_private_dataset_repo_zipped_img_data, hf_private_dataset_repo_zipped_img_data_, hf_private_dataset_repo_zipped_txt_data, hf_private_dataset_repo_zipped_txt_data_, hf_token, image_file, json_dict_of_lists_path, json_list_of_dicts_path, jsonl2_path, jsonl_312_path, jsonl_gz_path, jsonl_path, jsonl_str_path, lz4_file, mock_fsspec, mockfs, monkeypatch, parquet_path, pytestconfig, record_property, record_testsuite_property, record_xml_attribute, recwarn, set_ci_hub_access_token, set_sqlalchemy_silence_uber_warning, set_test_cache_config, set_update_download_counts_to_false, seven_zip_file, sqlite_path, tar_file, tar_jsonl_path, tar_nested_jsonl_path, temporary_repo, tensor_file, testrun_uid, text2_path, text_dir, text_dir_with_unsupported_extension, text_file, text_file_content, text_gz_path, text_path, text_path_with_unicode_new_lines, tmp_path, tmp_path_factory, tmpdir, tmpdir_factory, tmpfs, worker_id, xml_file, xz_file, zero_time_out_for_remote_code, zip_csv_path, zip_csv_with_dir_path, zip_file, zip_image_path, zip_jsonl_path, zip_jsonl_with_dir_path, zip_nested_jsonl_path, zip_text_path, zip_text_with_dir_path, zip_unsupported_ext_path, zip_uppercase_csv_path, zstd_file > use 'pytest --fixtures [testpath]' for help on them. /build/python-datasets/src/datasets-3.5.0/tests/features/test_pdf.py:8 _________ ERROR at setup of test_pdf_feature_encode_example[<lambda>3] _________ [gw44] linux -- Python 3.13.2 /build/python-datasets/src/datasets-3.5.0/test-env/bin/python file /build/python-datasets/src/datasets-3.5.0/tests/features/test_pdf.py, line 8 @require_pdfplumber @pytest.mark.parametrize( "build_example", [ lambda pdf_path: pdf_path, lambda pdf_path: open(pdf_path, "rb").read(), lambda pdf_path: {"path": pdf_path}, lambda pdf_path: {"path": pdf_path, "bytes": None}, lambda pdf_path: {"path": pdf_path, "bytes": open(pdf_path, "rb").read()}, lambda pdf_path: {"path": None, "bytes": open(pdf_path, "rb").read()}, lambda pdf_path: {"bytes": open(pdf_path, "rb").read()}, ], ) def test_pdf_feature_encode_example(shared_datadir, build_example): E fixture 'shared_datadir' not found > available fixtures: _hf_gated_dataset_repo_txt_data, arrow_file, arrow_path, audio_file, bz2_csv_path, bz2_file, cache, capfd, capfdbinary, caplog, capsys, capsysbinary, ci_hfh_hf_hub_url, ci_hub_config, cleanup_repo, csv2_path, csv_path, data_dir_with_hidden_files, dataset, dataset_dict, disable_implicit_token, disable_tqdm_output, doctest_namespace, geoparquet_path, gz_file, hf_api, hf_gated_dataset_repo_txt_data, hf_private_dataset_repo_txt_data, hf_private_dataset_repo_txt_data_, hf_private_dataset_repo_zipped_img_data, hf_private_dataset_repo_zipped_img_data_, hf_private_dataset_repo_zipped_txt_data, hf_private_dataset_repo_zipped_txt_data_, hf_token, image_file, json_dict_of_lists_path, json_list_of_dicts_path, jsonl2_path, jsonl_312_path, jsonl_gz_path, jsonl_path, jsonl_str_path, lz4_file, mock_fsspec, mockfs, monkeypatch, parquet_path, pytestconfig, record_property, record_testsuite_property, record_xml_attribute, recwarn, set_ci_hub_access_token, set_sqlalchemy_silence_uber_warning, set_test_cache_config, set_update_download_counts_to_false, seven_zip_file, sqlite_path, tar_file, tar_jsonl_path, tar_nested_jsonl_path, temporary_repo, tensor_file, testrun_uid, text2_path, text_dir, text_dir_with_unsupported_extension, text_file, text_file_content, text_gz_path, text_path, text_path_with_unicode_new_lines, tmp_path, tmp_path_factory, tmpdir, tmpdir_factory, tmpfs, worker_id, xml_file, xz_file, zero_time_out_for_remote_code, zip_csv_path, zip_csv_with_dir_path, zip_file, zip_image_path, zip_jsonl_path, zip_jsonl_with_dir_path, zip_nested_jsonl_path, zip_text_path, zip_text_with_dir_path, zip_unsupported_ext_path, zip_uppercase_csv_path, zstd_file > use 'pytest --fixtures [testpath]' for help on them. /build/python-datasets/src/datasets-3.5.0/tests/features/test_pdf.py:8 _________ ERROR at setup of test_pdf_feature_encode_example[<lambda>4] _________ [gw44] linux -- Python 3.13.2 /build/python-datasets/src/datasets-3.5.0/test-env/bin/python file /build/python-datasets/src/datasets-3.5.0/tests/features/test_pdf.py, line 8 @require_pdfplumber @pytest.mark.parametrize( "build_example", [ lambda pdf_path: pdf_path, lambda pdf_path: open(pdf_path, "rb").read(), lambda pdf_path: {"path": pdf_path}, lambda pdf_path: {"path": pdf_path, "bytes": None}, lambda pdf_path: {"path": pdf_path, "bytes": open(pdf_path, "rb").read()}, lambda pdf_path: {"path": None, "bytes": open(pdf_path, "rb").read()}, lambda pdf_path: {"bytes": open(pdf_path, "rb").read()}, ], ) def test_pdf_feature_encode_example(shared_datadir, build_example): E fixture 'shared_datadir' not found > available fixtures: _hf_gated_dataset_repo_txt_data, arrow_file, arrow_path, audio_file, bz2_csv_path, bz2_file, cache, capfd, capfdbinary, caplog, capsys, capsysbinary, ci_hfh_hf_hub_url, ci_hub_config, cleanup_repo, csv2_path, csv_path, data_dir_with_hidden_files, dataset, dataset_dict, disable_implicit_token, disable_tqdm_output, doctest_namespace, geoparquet_path, gz_file, hf_api, hf_gated_dataset_repo_txt_data, hf_private_dataset_repo_txt_data, hf_private_dataset_repo_txt_data_, hf_private_dataset_repo_zipped_img_data, hf_private_dataset_repo_zipped_img_data_, hf_private_dataset_repo_zipped_txt_data, hf_private_dataset_repo_zipped_txt_data_, hf_token, image_file, json_dict_of_lists_path, json_list_of_dicts_path, jsonl2_path, jsonl_312_path, jsonl_gz_path, jsonl_path, jsonl_str_path, lz4_file, mock_fsspec, mockfs, monkeypatch, parquet_path, pytestconfig, record_property, record_testsuite_property, record_xml_attribute, recwarn, set_ci_hub_access_token, set_sqlalchemy_silence_uber_warning, set_test_cache_config, set_update_download_counts_to_false, seven_zip_file, sqlite_path, tar_file, tar_jsonl_path, tar_nested_jsonl_path, temporary_repo, tensor_file, testrun_uid, text2_path, text_dir, text_dir_with_unsupported_extension, text_file, text_file_content, text_gz_path, text_path, text_path_with_unicode_new_lines, tmp_path, tmp_path_factory, tmpdir, tmpdir_factory, tmpfs, worker_id, xml_file, xz_file, zero_time_out_for_remote_code, zip_csv_path, zip_csv_with_dir_path, zip_file, zip_image_path, zip_jsonl_path, zip_jsonl_with_dir_path, zip_nested_jsonl_path, zip_text_path, zip_text_with_dir_path, zip_unsupported_ext_path, zip_uppercase_csv_path, zstd_file > use 'pytest --fixtures [testpath]' for help on them. /build/python-datasets/src/datasets-3.5.0/tests/features/test_pdf.py:8 _________ ERROR at setup of test_pdf_feature_encode_example[<lambda>5] _________ [gw44] linux -- Python 3.13.2 /build/python-datasets/src/datasets-3.5.0/test-env/bin/python file /build/python-datasets/src/datasets-3.5.0/tests/features/test_pdf.py, line 8 @require_pdfplumber @pytest.mark.parametrize( "build_example", [ lambda pdf_path: pdf_path, lambda pdf_path: open(pdf_path, "rb").read(), lambda pdf_path: {"path": pdf_path}, lambda pdf_path: {"path": pdf_path, "bytes": None}, lambda pdf_path: {"path": pdf_path, "bytes": open(pdf_path, "rb").read()}, lambda pdf_path: {"path": None, "bytes": open(pdf_path, "rb").read()}, lambda pdf_path: {"bytes": open(pdf_path, "rb").read()}, ], ) def test_pdf_feature_encode_example(shared_datadir, build_example): E fixture 'shared_datadir' not found > available fixtures: _hf_gated_dataset_repo_txt_data, arrow_file, arrow_path, audio_file, bz2_csv_path, bz2_file, cache, capfd, capfdbinary, caplog, capsys, capsysbinary, ci_hfh_hf_hub_url, ci_hub_config, cleanup_repo, csv2_path, csv_path, data_dir_with_hidden_files, dataset, dataset_dict, disable_implicit_token, disable_tqdm_output, doctest_namespace, geoparquet_path, gz_file, hf_api, hf_gated_dataset_repo_txt_data, hf_private_dataset_repo_txt_data, hf_private_dataset_repo_txt_data_, hf_private_dataset_repo_zipped_img_data, hf_private_dataset_repo_zipped_img_data_, hf_private_dataset_repo_zipped_txt_data, hf_private_dataset_repo_zipped_txt_data_, hf_token, image_file, json_dict_of_lists_path, json_list_of_dicts_path, jsonl2_path, jsonl_312_path, jsonl_gz_path, jsonl_path, jsonl_str_path, lz4_file, mock_fsspec, mockfs, monkeypatch, parquet_path, pytestconfig, record_property, record_testsuite_property, record_xml_attribute, recwarn, set_ci_hub_access_token, set_sqlalchemy_silence_uber_warning, set_test_cache_config, set_update_download_counts_to_false, seven_zip_file, sqlite_path, tar_file, tar_jsonl_path, tar_nested_jsonl_path, temporary_repo, tensor_file, testrun_uid, text2_path, text_dir, text_dir_with_unsupported_extension, text_file, text_file_content, text_gz_path, text_path, text_path_with_unicode_new_lines, tmp_path, tmp_path_factory, tmpdir, tmpdir_factory, tmpfs, worker_id, xml_file, xz_file, zero_time_out_for_remote_code, zip_csv_path, zip_csv_with_dir_path, zip_file, zip_image_path, zip_jsonl_path, zip_jsonl_with_dir_path, zip_nested_jsonl_path, zip_text_path, zip_text_with_dir_path, zip_unsupported_ext_path, zip_uppercase_csv_path, zstd_file > use 'pytest --fixtures [testpath]' for help on them. /build/python-datasets/src/datasets-3.5.0/tests/features/test_pdf.py:8 _________ ERROR at setup of test_pdf_feature_encode_example[<lambda>6] _________ [gw44] linux -- Python 3.13.2 /build/python-datasets/src/datasets-3.5.0/test-env/bin/python file /build/python-datasets/src/datasets-3.5.0/tests/features/test_pdf.py, line 8 @require_pdfplumber @pytest.mark.parametrize( "build_example", [ lambda pdf_path: pdf_path, lambda pdf_path: open(pdf_path, "rb").read(), lambda pdf_path: {"path": pdf_path}, lambda pdf_path: {"path": pdf_path, "bytes": None}, lambda pdf_path: {"path": pdf_path, "bytes": open(pdf_path, "rb").read()}, lambda pdf_path: {"path": None, "bytes": open(pdf_path, "rb").read()}, lambda pdf_path: {"bytes": open(pdf_path, "rb").read()}, ], ) def test_pdf_feature_encode_example(shared_datadir, build_example): E fixture 'shared_datadir' not found > available fixtures: _hf_gated_dataset_repo_txt_data, arrow_file, arrow_path, audio_file, bz2_csv_path, bz2_file, cache, capfd, capfdbinary, caplog, capsys, capsysbinary, ci_hfh_hf_hub_url, ci_hub_config, cleanup_repo, csv2_path, csv_path, data_dir_with_hidden_files, dataset, dataset_dict, disable_implicit_token, disable_tqdm_output, doctest_namespace, geoparquet_path, gz_file, hf_api, hf_gated_dataset_repo_txt_data, hf_private_dataset_repo_txt_data, hf_private_dataset_repo_txt_data_, hf_private_dataset_repo_zipped_img_data, hf_private_dataset_repo_zipped_img_data_, hf_private_dataset_repo_zipped_txt_data, hf_private_dataset_repo_zipped_txt_data_, hf_token, image_file, json_dict_of_lists_path, json_list_of_dicts_path, jsonl2_path, jsonl_312_path, jsonl_gz_path, jsonl_path, jsonl_str_path, lz4_file, mock_fsspec, mockfs, monkeypatch, parquet_path, pytestconfig, record_property, record_testsuite_property, record_xml_attribute, recwarn, set_ci_hub_access_token, set_sqlalchemy_silence_uber_warning, set_test_cache_config, set_update_download_counts_to_false, seven_zip_file, sqlite_path, tar_file, tar_jsonl_path, tar_nested_jsonl_path, temporary_repo, tensor_file, testrun_uid, text2_path, text_dir, text_dir_with_unsupported_extension, text_file, text_file_content, text_gz_path, text_path, text_path_with_unicode_new_lines, tmp_path, tmp_path_factory, tmpdir, tmpdir_factory, tmpfs, worker_id, xml_file, xz_file, zero_time_out_for_remote_code, zip_csv_path, zip_csv_with_dir_path, zip_file, zip_image_path, zip_jsonl_path, zip_jsonl_with_dir_path, zip_nested_jsonl_path, zip_text_path, zip_text_with_dir_path, zip_unsupported_ext_path, zip_uppercase_csv_path, zstd_file > use 'pytest --fixtures [testpath]' for help on them. /build/python-datasets/src/datasets-3.5.0/tests/features/test_pdf.py:8 _______________ ERROR at setup of test_dataset_with_pdf_feature ________________ [gw44] linux -- Python 3.13.2 /build/python-datasets/src/datasets-3.5.0/test-env/bin/python file /build/python-datasets/src/datasets-3.5.0/tests/features/test_pdf.py, line 34 @require_pdfplumber def test_dataset_with_pdf_feature(shared_datadir): E fixture 'shared_datadir' not found > available fixtures: _hf_gated_dataset_repo_txt_data, arrow_file, arrow_path, audio_file, bz2_csv_path, bz2_file, cache, capfd, capfdbinary, caplog, capsys, capsysbinary, ci_hfh_hf_hub_url, ci_hub_config, cleanup_repo, csv2_path, csv_path, data_dir_with_hidden_files, dataset, dataset_dict, disable_implicit_token, disable_tqdm_output, doctest_namespace, geoparquet_path, gz_file, hf_api, hf_gated_dataset_repo_txt_data, hf_private_dataset_repo_txt_data, hf_private_dataset_repo_txt_data_, hf_private_dataset_repo_zipped_img_data, hf_private_dataset_repo_zipped_img_data_, hf_private_dataset_repo_zipped_txt_data, hf_private_dataset_repo_zipped_txt_data_, hf_token, image_file, json_dict_of_lists_path, json_list_of_dicts_path, jsonl2_path, jsonl_312_path, jsonl_gz_path, jsonl_path, jsonl_str_path, lz4_file, mock_fsspec, mockfs, monkeypatch, parquet_path, pytestconfig, record_property, record_testsuite_property, record_xml_attribute, recwarn, set_ci_hub_access_token, set_sqlalchemy_silence_uber_warning, set_test_cache_config, set_update_download_counts_to_false, seven_zip_file, sqlite_path, tar_file, tar_jsonl_path, tar_nested_jsonl_path, temporary_repo, tensor_file, testrun_uid, text2_path, text_dir, text_dir_with_unsupported_extension, text_file, text_file_content, text_gz_path, text_path, text_path_with_unicode_new_lines, tmp_path, tmp_path_factory, tmpdir, tmpdir_factory, tmpfs, worker_id, xml_file, xz_file, zero_time_out_for_remote_code, zip_csv_path, zip_csv_with_dir_path, zip_file, zip_image_path, zip_jsonl_path, zip_jsonl_with_dir_path, zip_nested_jsonl_path, zip_text_path, zip_text_with_dir_path, zip_unsupported_ext_path, zip_uppercase_csv_path, zstd_file > use 'pytest --fixtures [testpath]' for help on them. /build/python-datasets/src/datasets-3.5.0/tests/features/test_pdf.py:34 _________ ERROR at setup of test_pdf_feature_encode_example[<lambda>0] _________ [gw46] linux -- Python 3.13.2 /build/python-datasets/src/datasets-3.5.0/test-env/bin/python file /build/python-datasets/src/datasets-3.5.0/tests/features/test_pdf.py, line 8 @require_pdfplumber @pytest.mark.parametrize( "build_example", [ lambda pdf_path: pdf_path, lambda pdf_path: open(pdf_path, "rb").read(), lambda pdf_path: {"path": pdf_path}, lambda pdf_path: {"path": pdf_path, "bytes": None}, lambda pdf_path: {"path": pdf_path, "bytes": open(pdf_path, "rb").read()}, lambda pdf_path: {"path": None, "bytes": open(pdf_path, "rb").read()}, lambda pdf_path: {"bytes": open(pdf_path, "rb").read()}, ], ) def test_pdf_feature_encode_example(shared_datadir, build_example): E fixture 'shared_datadir' not found > available fixtures: _hf_gated_dataset_repo_txt_data, arrow_file, arrow_path, audio_file, bz2_csv_path, bz2_file, cache, capfd, capfdbinary, caplog, capsys, capsysbinary, ci_hfh_hf_hub_url, ci_hub_config, cleanup_repo, csv2_path, csv_path, data_dir_with_hidden_files, dataset, dataset_dict, disable_implicit_token, disable_tqdm_output, doctest_namespace, geoparquet_path, gz_file, hf_api, hf_gated_dataset_repo_txt_data, hf_private_dataset_repo_txt_data, hf_private_dataset_repo_txt_data_, hf_private_dataset_repo_zipped_img_data, hf_private_dataset_repo_zipped_img_data_, hf_private_dataset_repo_zipped_txt_data, hf_private_dataset_repo_zipped_txt_data_, hf_token, image_file, json_dict_of_lists_path, json_list_of_dicts_path, jsonl2_path, jsonl_312_path, jsonl_gz_path, jsonl_path, jsonl_str_path, lz4_file, mock_fsspec, mockfs, monkeypatch, parquet_path, pytestconfig, record_property, record_testsuite_property, record_xml_attribute, recwarn, set_ci_hub_access_token, set_sqlalchemy_silence_uber_warning, set_test_cache_config, set_update_download_counts_to_false, seven_zip_file, sqlite_path, tar_file, tar_jsonl_path, tar_nested_jsonl_path, temporary_repo, tensor_file, testrun_uid, text2_path, text_dir, text_dir_with_unsupported_extension, text_file, text_file_content, text_gz_path, text_path, text_path_with_unicode_new_lines, tmp_path, tmp_path_factory, tmpdir, tmpdir_factory, tmpfs, worker_id, xml_file, xz_file, zero_time_out_for_remote_code, zip_csv_path, zip_csv_with_dir_path, zip_file, zip_image_path, zip_jsonl_path, zip_jsonl_with_dir_path, zip_nested_jsonl_path, zip_text_path, zip_text_with_dir_path, zip_unsupported_ext_path, zip_uppercase_csv_path, zstd_file > use 'pytest --fixtures [testpath]' for help on them. /build/python-datasets/src/datasets-3.5.0/tests/features/test_pdf.py:8 ``` ### Expected behavior All fixtures used in tests should be available. ### Environment info Arch Linux build system, building the [python-datasets](https://gitlab.archlinux.org/archlinux/packaging/packages/python-datasets) package. There are actually [many deselected tests](https://gitlab.archlinux.org/archlinux/packaging/packages/python-datasets/-/blob/6f97957f0c326cc7b3da6b7f12326305bcaef374/PKGBUILD#L66-148) which were failing on previous releases, but these errors popped up in 3.5.0.
{ "avatar_url": "https://avatars.githubusercontent.com/u/1289205?v=4", "events_url": "https://api.github.com/users/lahwaacz/events{/privacy}", "followers_url": "https://api.github.com/users/lahwaacz/followers", "following_url": "https://api.github.com/users/lahwaacz/following{/other_user}", "gists_url": "https://api.github.com/users/lahwaacz/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lahwaacz", "id": 1289205, "login": "lahwaacz", "node_id": "MDQ6VXNlcjEyODkyMDU=", "organizations_url": "https://api.github.com/users/lahwaacz/orgs", "received_events_url": "https://api.github.com/users/lahwaacz/received_events", "repos_url": "https://api.github.com/users/lahwaacz/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lahwaacz/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lahwaacz/subscriptions", "type": "User", "url": "https://api.github.com/users/lahwaacz", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7486/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7486/timeline
null
completed
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7481
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7481/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7481/comments
https://api.github.com/repos/huggingface/datasets/issues/7481/events
https://github.com/huggingface/datasets/issues/7481
2,950,692,971
I_kwDODunzps6v4ABr
7,481
deal with python `10_000` legal number in slice syntax
{ "avatar_url": "https://avatars.githubusercontent.com/u/196988264?v=4", "events_url": "https://api.github.com/users/sfc-gh-sbekman/events{/privacy}", "followers_url": "https://api.github.com/users/sfc-gh-sbekman/followers", "following_url": "https://api.github.com/users/sfc-gh-sbekman/following{/other_user}", "gists_url": "https://api.github.com/users/sfc-gh-sbekman/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/sfc-gh-sbekman", "id": 196988264, "login": "sfc-gh-sbekman", "node_id": "U_kgDOC73NaA", "organizations_url": "https://api.github.com/users/sfc-gh-sbekman/orgs", "received_events_url": "https://api.github.com/users/sfc-gh-sbekman/received_events", "repos_url": "https://api.github.com/users/sfc-gh-sbekman/repos", "site_admin": false, "starred_url": "https://api.github.com/users/sfc-gh-sbekman/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sfc-gh-sbekman/subscriptions", "type": "User", "url": "https://api.github.com/users/sfc-gh-sbekman", "user_view_type": "public" }
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
closed
false
null
[]
null
[ "should be an easy fix, I opened a PR" ]
2025-03-26T20:10:54Z
2025-03-28T16:20:44Z
2025-03-28T16:20:44Z
NONE
null
null
null
null
### Feature request ``` In [6]: ds = datasets.load_dataset("HuggingFaceH4/ultrachat_200k", split="train_sft[:1000]") In [7]: ds = datasets.load_dataset("HuggingFaceH4/ultrachat_200k", split="train_sft[:1_000]") [dozens of frames skipped] File /usr/local/lib/python3.10/dist-packages/datasets/arrow_reader.py:444, in _str_to_read_instruction(spec) 442 res = _SUB_SPEC_RE.match(spec) 443 if not res: --> 444 raise ValueError(f"Unrecognized instruction format: {spec}") ValueError: Unrecognized instruction format: train_sft[:1_000] ``` It took me a while to understand what the problem was. But apparently `pyarrow` doesn't allow python numbers that may include `_` as in `1_000`. The `_` aids readability since `10_000_000` vs `10000000` is obviously easier to grasp of what the actual number is. Feature request: ideally `datasets` being a python module will do the right thing and convert python numbers into whatever pyarrow supports - in this case stripping `_`s. Second best it'd err and tell the user that using numbers with `_` in split slices is not acceptible, so that the user won't have to deal with a huge pyarrow assert they know nothing about. Thank you!
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7481/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7481/timeline
null
completed
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7480
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7480/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7480/comments
https://api.github.com/repos/huggingface/datasets/issues/7480/events
https://github.com/huggingface/datasets/issues/7480
2,950,315,214
I_kwDODunzps6v2jzO
7,480
HF_DATASETS_CACHE ignored?
{ "avatar_url": "https://avatars.githubusercontent.com/u/31896?v=4", "events_url": "https://api.github.com/users/stephenroller/events{/privacy}", "followers_url": "https://api.github.com/users/stephenroller/followers", "following_url": "https://api.github.com/users/stephenroller/following{/other_user}", "gists_url": "https://api.github.com/users/stephenroller/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/stephenroller", "id": 31896, "login": "stephenroller", "node_id": "MDQ6VXNlcjMxODk2", "organizations_url": "https://api.github.com/users/stephenroller/orgs", "received_events_url": "https://api.github.com/users/stephenroller/received_events", "repos_url": "https://api.github.com/users/stephenroller/repos", "site_admin": false, "starred_url": "https://api.github.com/users/stephenroller/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/stephenroller/subscriptions", "type": "User", "url": "https://api.github.com/users/stephenroller", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "FWIW, it does eventually write to /tmp/roller/datasets when generating the final version.", "Hey, I’d love to work on this issue but I am a beginner, can I work it with you?", "Hi @lhoestq,\nI'd like to look into this issue but I'm still learning. Could you share any quick pointers on the HF_DATASETS_CACHE behavior here? Thanks!", "Hi ! `HF_DATASETS_CACHE` is only for the cache files of the `datasets` library, not for the `huggingface_hub` cache for files downloaded from the Hugging Face Hub.\n\nYou should either specify `HF_HOME` (parent cache path for everything HF) or both `HF_DATASETS_CACHE` and `HF_HUB_CACHE`", "\n\nThanks for clarifying, @lhoestq! To make sure I’ve got it right:\n\n1. **HF_DATASETS_CACHE** only controls where the **datasets** library writes its own cache files (e.g. processed shards, Arrow files, etc.).\n2. Anything downloaded via **huggingface_hub** (models, tokenizers, raw files) still goes into the Hub cache (by default `~/.cache/huggingface/hub`), unless you set **HF_HUB_CACHE** or the parent **HF_HOME**.\n\nSo if you want everything off NFS and onto local disk you have two options:\n\n- **Set both** \n ```bash\n export HF_DATASETS_CACHE=/tmp/roller/datasets \n export HF_HUB_CACHE=/tmp/roller/hub\n ```\n- **Or set** \n ```bash\n export HF_HOME=/tmp/roller\n ```\n which will apply to both subdirectories.\n\nIs that correct? And would it make sense to add a note to the docs clarifying the distinction (or even support S3 for the Hub cache in the future)? I’m happy to draft a small docs PR if that would help.", "Hi, yes that's correct, thanks for the clarification ! A note in the docs would be welcome, thanks" ]
2025-03-26T17:19:34Z
2025-04-28T10:16:16Z
null
NONE
null
null
null
null
### Describe the bug I'm struggling to get things to respect HF_DATASETS_CACHE. Rationale: I'm on a system that uses NFS for homedir, so downloading to NFS is expensive, slow, and wastes valuable quota compared to local disk. Instead, it seems to rely mostly on HF_HUB_CACHE. Current version: 3.2.1dev. In the process of testing 3.4.0 ### Steps to reproduce the bug [Currently writing using datasets 3.2.1dev. Will follow up with 3.4.0 results] dump.py: ```python from datasets import load_dataset dataset = load_dataset("HuggingFaceFW/fineweb", name="sample-100BT", split="train") ``` Repro steps ```bash # ensure no cache $ mv ~/.cache/huggingface ~/.cache/huggingface.bak $ export HF_DATASETS_CACHE=/tmp/roller/datasets $ rm -rf ${HF_DATASETS_CACHE} $ env | grep HF | grep -v TOKEN HF_DATASETS_CACHE=/tmp/roller/datasets $ python dump.py # (omitted for brevity) # (while downloading) $ du -hcs ~/.cache/huggingface/hub 18G hub 18G total # (after downloading) $ du -hcs ~/.cache/huggingface/hub ``` It's a shame because datasets supports s3 (which I could really use right now) but hub does not. ### Expected behavior * ~/.cache/huggingface/hub stays empty * /tmp/roller/datasets becomes full of stuff ### Environment info [Currently writing using datasets 3.2.1dev. Will follow up with 3.4.0 results]
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7480/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7480/timeline
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7479
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7479/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7479/comments
https://api.github.com/repos/huggingface/datasets/issues/7479/events
https://github.com/huggingface/datasets/issues/7479
2,950,235,396
I_kwDODunzps6v2QUE
7,479
Features.from_arrow_schema is destructive
{ "avatar_url": "https://avatars.githubusercontent.com/u/2779410?v=4", "events_url": "https://api.github.com/users/BramVanroy/events{/privacy}", "followers_url": "https://api.github.com/users/BramVanroy/followers", "following_url": "https://api.github.com/users/BramVanroy/following{/other_user}", "gists_url": "https://api.github.com/users/BramVanroy/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/BramVanroy", "id": 2779410, "login": "BramVanroy", "node_id": "MDQ6VXNlcjI3Nzk0MTA=", "organizations_url": "https://api.github.com/users/BramVanroy/orgs", "received_events_url": "https://api.github.com/users/BramVanroy/received_events", "repos_url": "https://api.github.com/users/BramVanroy/repos", "site_admin": false, "starred_url": "https://api.github.com/users/BramVanroy/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/BramVanroy/subscriptions", "type": "User", "url": "https://api.github.com/users/BramVanroy", "user_view_type": "public" }
[]
open
false
null
[]
null
[]
2025-03-26T16:46:43Z
2025-03-26T16:46:58Z
null
CONTRIBUTOR
null
null
null
null
### Describe the bug I came across this, perhaps niche, bug where `Features` does not/cannot account for pyarrow's `nullable=False` option in Fields. Interestingly, I found that in regular "flat" fields this does not necessarily lead to conflicts, but when a non-nullable field is in a struct, an incompatibility arises. It's not easy to explain in words, so the minimal example below should help I hope. Note that I suggest a solution in the comments in the code, simply allowing `Dataset.to_parquet` to allow for a `schema` argument which, when provided, will override the default ds.features.arrow_schema. ### Steps to reproduce the bug ```python import os from datasets import Dataset, Features import pyarrow as pa import pyarrow.parquet as pq # HF datasets is destructive when you call Features.from_arrow_schema(schema) on a schema # because it will not account for nullable and non-nullable fields in structs (it will always allow nullable) # Reloading the same dataset with the original schema will raise an error because the schema is not the same anymore non_nullable_schema = pa.schema( [ pa.field("text", pa.string(), nullable=False), pa.field("meta", pa.struct( [ pa.field("date", pa.list_(pa.string()), nullable=False), ], ), ), ] ) print("ORIGINAL SCHEMA") print(non_nullable_schema) print() feats = Features.from_arrow_schema(non_nullable_schema) print("FEATUR-IZED SCHEMA (nullable-restrictions are gone)") print(feats.arrow_schema) print() ds = Dataset.from_dict( { "text": ["a", "b", "c"], "meta": [{"date": ["2021-01-01"]}, {"date": ["2021-01-02"]}, {"date": ["2021-01-03"]}], }, features=feats, ) fname = "tmp.parquet" # This is not possible: TypeError: pyarrow.parquet.core.ParquetWriter() got multiple values for keyword argument 'schema' # Though I believe this would be the easiest fix: allow schema to be passed to to_parquet and overwrite the schema in the dataset # ds.to_parquet(fname, schema=non_nullable_schema) ds.to_parquet(fname) try: _ = pq.read_table(fname, schema=non_nullable_schema) finally: os.unlink(fname) ``` ### Expected behavior - Non-destructive behavior when converting an arrow schema to Features; or - the ability to override the default arrow schema with a custom one ### Environment info - `datasets` version: 3.2.0 - Platform: Linux-5.14.0-427.20.1.el9_4.x86_64-x86_64-with-glibc2.34 - Python version: 3.11.10 - `huggingface_hub` version: 0.27.1 - PyArrow version: 18.1.0 - Pandas version: 2.2.3 - `fsspec` version: 2024.9.0
null
{ "+1": 1, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/7479/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7479/timeline
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7477
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7477/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7477/comments
https://api.github.com/repos/huggingface/datasets/issues/7477/events
https://github.com/huggingface/datasets/issues/7477
2,947,169,460
I_kwDODunzps6vqjy0
7,477
What is the canonical way to compress a Dataset?
{ "avatar_url": "https://avatars.githubusercontent.com/u/6130352?v=4", "events_url": "https://api.github.com/users/eric-czech/events{/privacy}", "followers_url": "https://api.github.com/users/eric-czech/followers", "following_url": "https://api.github.com/users/eric-czech/following{/other_user}", "gists_url": "https://api.github.com/users/eric-czech/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/eric-czech", "id": 6130352, "login": "eric-czech", "node_id": "MDQ6VXNlcjYxMzAzNTI=", "organizations_url": "https://api.github.com/users/eric-czech/orgs", "received_events_url": "https://api.github.com/users/eric-czech/received_events", "repos_url": "https://api.github.com/users/eric-czech/repos", "site_admin": false, "starred_url": "https://api.github.com/users/eric-czech/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/eric-czech/subscriptions", "type": "User", "url": "https://api.github.com/users/eric-czech", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "I saw this post by @lhoestq: https://discuss.huggingface.co/t/increased-arrow-table-size-by-factor-of-2/26561/4 suggesting that there is at least some internal code for writing sharded parquet datasets non-concurrently. This appears to be that code: https://github.com/huggingface/datasets/blob/94ccd1b4fada8a92cea96dc8df4e915041d695b6/src/datasets/arrow_dataset.py#L5380-L5397\n\nIs there any fundamental reason (e.g. race conditions) that this kind of operation couldn't exist as a utility or method on a `Dataset` with a `num_proc` argument? I am not seeing any other issues explicitly for that ask. \n", "We simply haven't implemented a method to save as sharded parquet locally yet ^^'\n\nRight now the only sharded parquet export method is `push_to_hub()` which writes to HF. But we can have a local one as well. \n\nIn the meantime the easiest way to export as sharded parquet locally is to `.shard()` and `.to_parquet()` (see code from my comment [here](https://github.com/huggingface/datasets/issues/7047#issuecomment-2233163406))", "> In the meantime the easiest way to export as sharded parquet locally is to .shard() and .to_parquet()\n\nMakes sense, BUT how can it be done concurrently? I could of course use multiprocessing myself or a dozen other libraries for parallelizing single-node/local operations like that.\n\nWhat I'm asking though is, what is the way to do this that is most canonical for `datasets` specifically? I.e. what is least likely to causing pickling or other issues because it is used frequently internally by `datasets` and already likely tests for a lot of library-native edge-cases?", "Everything in `datasets` is picklable :) and even better: since the data are memory mapped from disk, pickling in one process and unpickling in another doesn't do any copy - it instantaneously reloads the memory map.\n\nSo feel free to use the library you prefer to parallelize your operations.\n\n(it's another story in distributed setups though, because in that case you either need to copy and send the data or setup a distributed filesystem)" ]
2025-03-25T16:47:51Z
2025-04-03T09:13:11Z
null
NONE
null
null
null
null
Given that Arrow is the preferred backend for a Dataset, what is a user supposed to do if they want concurrent reads, concurrent writes AND on-disk compression for a larger dataset? Parquet would be the obvious answer except that there is no native support for writing sharded, parquet datasets concurrently [[1](https://github.com/huggingface/datasets/issues/7047)]. Am I missing something? And if so, why is this not the standard/default way that `Dataset`'s work as they do in Xarray, Ray Data, Composer, etc.?
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7477/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7477/timeline
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7475
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7475/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7475/comments
https://api.github.com/repos/huggingface/datasets/issues/7475/events
https://github.com/huggingface/datasets/issues/7475
2,946,640,570
I_kwDODunzps6voiq6
7,475
IterableDataset's state_dict shard_example_idx is always equal to the number of samples in a shard
{ "avatar_url": "https://avatars.githubusercontent.com/u/48770768?v=4", "events_url": "https://api.github.com/users/bruno-hays/events{/privacy}", "followers_url": "https://api.github.com/users/bruno-hays/followers", "following_url": "https://api.github.com/users/bruno-hays/following{/other_user}", "gists_url": "https://api.github.com/users/bruno-hays/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/bruno-hays", "id": 48770768, "login": "bruno-hays", "node_id": "MDQ6VXNlcjQ4NzcwNzY4", "organizations_url": "https://api.github.com/users/bruno-hays/orgs", "received_events_url": "https://api.github.com/users/bruno-hays/received_events", "repos_url": "https://api.github.com/users/bruno-hays/repos", "site_admin": false, "starred_url": "https://api.github.com/users/bruno-hays/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/bruno-hays/subscriptions", "type": "User", "url": "https://api.github.com/users/bruno-hays", "user_view_type": "public" }
[]
closed
false
{ "avatar_url": "https://avatars.githubusercontent.com/u/129883215?v=4", "events_url": "https://api.github.com/users/Harry-Yang0518/events{/privacy}", "followers_url": "https://api.github.com/users/Harry-Yang0518/followers", "following_url": "https://api.github.com/users/Harry-Yang0518/following{/other_user}", "gists_url": "https://api.github.com/users/Harry-Yang0518/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/Harry-Yang0518", "id": 129883215, "login": "Harry-Yang0518", "node_id": "U_kgDOB73cTw", "organizations_url": "https://api.github.com/users/Harry-Yang0518/orgs", "received_events_url": "https://api.github.com/users/Harry-Yang0518/received_events", "repos_url": "https://api.github.com/users/Harry-Yang0518/repos", "site_admin": false, "starred_url": "https://api.github.com/users/Harry-Yang0518/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Harry-Yang0518/subscriptions", "type": "User", "url": "https://api.github.com/users/Harry-Yang0518", "user_view_type": "public" }
[ { "avatar_url": "https://avatars.githubusercontent.com/u/129883215?v=4", "events_url": "https://api.github.com/users/Harry-Yang0518/events{/privacy}", "followers_url": "https://api.github.com/users/Harry-Yang0518/followers", "following_url": "https://api.github.com/users/Harry-Yang0518/following{/other_user}", "gists_url": "https://api.github.com/users/Harry-Yang0518/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/Harry-Yang0518", "id": 129883215, "login": "Harry-Yang0518", "node_id": "U_kgDOB73cTw", "organizations_url": "https://api.github.com/users/Harry-Yang0518/orgs", "received_events_url": "https://api.github.com/users/Harry-Yang0518/received_events", "repos_url": "https://api.github.com/users/Harry-Yang0518/repos", "site_admin": false, "starred_url": "https://api.github.com/users/Harry-Yang0518/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Harry-Yang0518/subscriptions", "type": "User", "url": "https://api.github.com/users/Harry-Yang0518", "user_view_type": "public" } ]
null
[ "Hey, I’d love to work on this issue but I am a beginner, can I work it with you?", "Hello. I'm sorry but I don't have much time to get in the details for now.\nHave you managed to reproduce the issue with the code provided ?\nIf you want to work on it, you can self-assign and ask @lhoestq for directions", "Hi Bruno, I am trying to reproduce it this later in this week and let you know what I found.", "#self-assign", "Good catch, I tried and if the dataset is bigger (e.g. `range(9999)`) it returns `\"shard_example_idx\": 1000` with is the `config.DEFAULT_MAX_BATCH_SIZE`\n\nhttps://github.com/huggingface/datasets/blob/94ccd1b4fada8a92cea96dc8df4e915041d695b6/src/datasets/arrow_dataset.py#L5313-L5317\n\nIt looks like the state_dict is incorrect in that case, it should account for this and use the `RebatchedArrowExamplesIterable` which buffers the batch of 1000 rows and counts the iteration within the batch in the state_dict", "\nHello @lhoestq,\n\nI’ve been debugging the `IterableDataset.state_dict()` behavior and applied a patch to `ArrowExamplesIterable._iter_arrow()` in an attempt to fix the issue described in #7475—specifically, that `shard_example_idx` always equals the number of samples in the shard, even if only a few examples have been consumed.\n\n### What I Tried\n\nI updated `_iter_arrow` to slice off already-consumed rows and increment the state only by the number of actual examples yielded, like this:\n\n```python\nclass ArrowExamplesIterable(_BaseExamplesIterable):\n # ... __init__ and _init_state_dict as before ...\n\n def _iter_arrow(self):\n shard_idx_start = self._state_dict[\"shard_idx\"] if self._state_dict else 0\n\n for gen_kwargs in islice(\n _split_gen_kwargs(self.kwargs, max_num_jobs=self.num_shards),\n shard_idx_start, None\n ):\n shard_example_idx_start = self._state_dict[\"shard_example_idx\"] if self._state_dict else 0\n shard_example_idx = 0\n\n for key, pa_table in self.generate_tables_fn(**gen_kwargs):\n num_rows = len(pa_table)\n next_idx = shard_example_idx + num_rows\n\n if next_idx <= shard_example_idx_start:\n shard_example_idx = next_idx\n continue\n\n offset = max(0, shard_example_idx_start - shard_example_idx)\n sliced_table = pa_table.slice(offset)\n\n if self._state_dict:\n self._state_dict[\"shard_example_idx\"] += len(sliced_table)\n\n yield key, sliced_table\n shard_example_idx = next_idx\n\n if self._state_dict:\n self._state_dict[\"shard_idx\"] += 1\n self._state_dict[\"shard_example_idx\"] = 0\n```\n\nI verified that the updated code was being used, and I added debug prints to confirm the table slicing and counter updates.\n\n### The Issue Still Exists\n\nDespite the changes, the behavior remains the same. Running this minimal repro:\n\n```python\nds = Dataset.from_dict({\"a\": range(6)}).to_iterable_dataset(num_shards=1)\nfor idx, example in enumerate(ds):\n print(example)\n if idx == 2:\n print(\"checkpoint\")\n print(ds.state_dict())\n break\n```\n\nStill outputs:\n\n```bash\n{'a': 0}\n{'a': 1}\n{'a': 2}\ncheckpoint\n{'examples_iterable': {'shard_idx': 0, 'shard_example_idx': 6, 'type': 'ArrowExamplesIterable'}, 'epoch': 0}\n```\n\nEven though only 3 examples were consumed, `shard_example_idx` jumps to 6.\n\n### Questions\n\n- Could there be another place (e.g., in `__iter__`, `RebatchedArrowExamplesIterable`, or the `IterableDataset` wrapper) that's still using the old logic and overriding the state?\n- Is there a better location to intercept and count yielded examples?\n- Would you recommend tracking a new `true_example_idx` to avoid modifying existing behavior?\n\nLet me know your thoughts—happy to iterate further and submit a PR once we align on the right approach. Thanks again for your help and feedback!", "I found a fix using RebatchedArrowExamplesIterable, let me know if it's all good for you now", "Hi @lhoestq, thanks for the quick fix and for referencing RebatchedArrowExamplesIterable! 🙌\n\nI just tested your patch locally and can confirm that shard_example_idx is now tracking correctly when only a subset of examples is consumed. This resolves the issue I was seeing in #7475.\n\nReally appreciate the guidance earlier on where to look—it was a great learning opportunity. If there are other parts of the IterableDataset internals that could use cleanup or testing, I’d be happy to help." ]
2025-03-25T13:58:07Z
2025-05-06T14:22:19Z
2025-05-06T14:05:07Z
CONTRIBUTOR
null
null
null
null
### Describe the bug I've noticed a strange behaviour with Iterable state_dict: the value of shard_example_idx is always equal to the amount of samples in a shard. ### Steps to reproduce the bug I am reusing the example from the doc ```python from datasets import Dataset ds = Dataset.from_dict({"a": range(6)}).to_iterable_dataset(num_shards=1) state_dict = None # Iterate through the dataset and print examples for idx, example in enumerate(ds): print(example) if idx == 2: state_dict = ds.state_dict() print("checkpoint") break print(state_dict) ``` Returns: ``` {'a': 0} {'a': 1} checkpoint {'examples_iterable': {'shard_idx': 0, 'shard_example_idx': 6, 'type': 'ArrowExamplesIterable'}, 'epoch': 0} ``` ### Expected behavior shard_example_idx should be 2 instead of 6 If we run with num_shards=2, then shard_example_idx is 3 instead of 2 and so on. ### Environment info - `datasets` version: 3.4.1 - Platform: macOS-14.6.1-arm64-arm-64bit - Python version: 3.12.9 - `huggingface_hub` version: 0.29.3 - PyArrow version: 19.0.1 - Pandas version: 2.2.3 - `fsspec` version: 2024.12.0
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7475/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7475/timeline
null
completed
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7473
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7473/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7473/comments
https://api.github.com/repos/huggingface/datasets/issues/7473/events
https://github.com/huggingface/datasets/issues/7473
2,939,034,643
I_kwDODunzps6vLhwT
7,473
Webdataset data format problem
{ "avatar_url": "https://avatars.githubusercontent.com/u/1017189?v=4", "events_url": "https://api.github.com/users/edmcman/events{/privacy}", "followers_url": "https://api.github.com/users/edmcman/followers", "following_url": "https://api.github.com/users/edmcman/following{/other_user}", "gists_url": "https://api.github.com/users/edmcman/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/edmcman", "id": 1017189, "login": "edmcman", "node_id": "MDQ6VXNlcjEwMTcxODk=", "organizations_url": "https://api.github.com/users/edmcman/orgs", "received_events_url": "https://api.github.com/users/edmcman/received_events", "repos_url": "https://api.github.com/users/edmcman/repos", "site_admin": false, "starred_url": "https://api.github.com/users/edmcman/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/edmcman/subscriptions", "type": "User", "url": "https://api.github.com/users/edmcman", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "I was able to work around it" ]
2025-03-21T17:23:52Z
2025-03-21T19:19:58Z
2025-03-21T19:19:58Z
NONE
null
null
null
null
### Describe the bug Please see https://huggingface.co/datasets/ejschwartz/idioms/discussions/1 Error code: FileFormatMismatchBetweenSplitsError All three splits, train, test, and validation, use webdataset. But only the train split has more than one file. How can I force the other two splits to also be interpreted as being the webdataset format? (I don't think there is currently a way, but happy to be told that I am wrong.) ### Steps to reproduce the bug ``` import datasets datasets.load_dataset("ejschwartz/idioms") ### Expected behavior The dataset loads. Alternatively, there is a YAML syntax for manually specifying the format. ### Environment info - `datasets` version: 3.2.0 - Platform: Linux-6.8.0-52-generic-x86_64-with-glibc2.35 - Python version: 3.10.12 - `huggingface_hub` version: 0.28.1 - PyArrow version: 19.0.0 - Pandas version: 2.2.3 - `fsspec` version: 2024.9.0
{ "avatar_url": "https://avatars.githubusercontent.com/u/1017189?v=4", "events_url": "https://api.github.com/users/edmcman/events{/privacy}", "followers_url": "https://api.github.com/users/edmcman/followers", "following_url": "https://api.github.com/users/edmcman/following{/other_user}", "gists_url": "https://api.github.com/users/edmcman/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/edmcman", "id": 1017189, "login": "edmcman", "node_id": "MDQ6VXNlcjEwMTcxODk=", "organizations_url": "https://api.github.com/users/edmcman/orgs", "received_events_url": "https://api.github.com/users/edmcman/received_events", "repos_url": "https://api.github.com/users/edmcman/repos", "site_admin": false, "starred_url": "https://api.github.com/users/edmcman/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/edmcman/subscriptions", "type": "User", "url": "https://api.github.com/users/edmcman", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7473/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7473/timeline
null
completed
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false