SoccerNet-XFoul Video Captioning Dataset
This repository provides the SoccerNet-XFoul dataset converted into the OpenSportsLab (OSL) video captioning JSON format.
It contains three official splits:
- Train
- Validation
- Test
Each split consists of:
- A structured OSL JSON annotation file
- A corresponding folder containing all referenced video clips
Dataset structure
annotations_train.json
annotations_valid.json
annotations_test.json
train/
valid/
test/
Annotation files
annotations_train.json
Contains all training samples in OSL video captioning format.
annotations_valid.json
Contains validation samples for model development and tuning.
annotations_test.json
Contains test samples for final evaluation and benchmarking.
Each JSON file includes:
- Structured metadata per video action
- Video inputs with relative paths
- Natural language captions describing the action
- Optional question context stored as metadata
Video folders
Each annotation file references video clips stored in its corresponding folder:
| JSON file | Video folder |
|---|---|
annotations_train.json |
train/ |
annotations_valid.json |
valid/ |
annotations_test.json |
test/ |
The relative paths inside each JSON file directly map to these folders.
Example:
"path": "test/action_0/clip_0.mp4"
corresponds to:
test/action_0/clip_0.mp4
Downloading the video data using the JSON annotations
All video paths are explicitly listed inside the JSON files. You can automatically download only the required video files by parsing the JSON annotations.
This ensures:
- No unnecessary downloads
- Perfect alignment between annotations and videos
- Fully reproducible dataset reconstruction
Requirements
pip install huggingface_hub
Download all test split videos
Run this command in the directory containing annotations_test.json:
python3 - <<'PY'
import json
from pathlib import Path
from huggingface_hub import hf_hub_download
DATASET_ID = "OpenSportsLab/soccernetpro-description-xfoul"
REVISION = "main"
JSON_FILE = Path("annotations_test.json").resolve()
root = JSON_FILE.parent
with JSON_FILE.open("r", encoding="utf-8") as f:
data = json.load(f)
paths = []
for item in data["data"]:
for inp in item["inputs"]:
if inp["type"] == "video":
paths.append(inp["path"])
paths = sorted(set(paths))
print(f"Downloading {len(paths)} video files...")
for p in paths:
dest = root / p
dest.parent.mkdir(parents=True, exist_ok=True)
hf_hub_download(
repo_id=DATASET_ID,
filename=p,
repo_type="dataset",
revision=REVISION,
local_dir=str(root),
local_dir_use_symlinks=False,
)
print("Download completed.")
PY
Download other splits
Simply replace the JSON file:
annotations_train.json
annotations_valid.json
and rerun the same command.
Advantages of JSON-driven video retrieval
- Guarantees annotation-video consistency
- Avoids downloading unused data
- Enables programmatic dataset reconstruction
- Supports scalable training pipelines
Format
The dataset follows the OpenSportsLab (OSL) video captioning schema:
{
"task": "video_captioning",
"dataset_name": "...",
"data": [
{
"inputs": [{ "type": "video", "path": "..." }],
"captions": [{ "lang": "en", "text": "..." }]
}
]
}
Citation
If you use this dataset, please cite SoccerNet-XFoul and OpenSportsLab accordingly.
- Downloads last month
- 45