text
stringlengths
4
690k
-- 2012-02-13 Andreas: testing correct polarity of data types -- sized types are the only source of subtyping, I think... {-# OPTIONS --sized-types #-} module DataPolarity where open import Common.Size data Nat : {size : Size} -> Set where zero : {size : Size} -> Nat {↑ size} suc : {size : Size} -> Nat {size} -> Nat {↑ size} data Pair (A : Set) : Set where _,_ : A -> A -> Pair A split : {i : Size} → Nat {i} → Pair (Nat {i}) split zero = zero , zero split (suc n) with split n ... | (l , r) = suc r , l -- this should work, due to the monotonicity of Pair -- without subtyping, Agda would complain about i != ↑ i MyPair : Nat → Set → Set MyPair zero A = Pair A MyPair (suc n) A = MyPair n A -- polarity should be preserved by functions mysplit : {i : Size} → (n : Nat {i}) → MyPair (suc zero) (Nat {i}) mysplit zero = zero , zero mysplit (suc n) with mysplit n ... | (l , r) = suc r , l
{-# OPTIONS --allow-unsolved-metas #-} module Control.Lens where open import Function using (id; _∘_; const; flip) open import Relation.Binary.PropositionalEquality open ≡-Reasoning open import Axiom.FunctionExtensionality open import Util.Equality open import Control.Functor renaming (Comp to _•_) open import Control.Functor.NaturalTransformation renaming (Id to Nid; Comp to _·_) -- S-combinator. apply : ∀ {A B C : Set} → (A → B → C) → (A → B) → A → C apply f g a = f a (g a) -- Flipped S-combinator (flipped apply). flipply : ∀ {O A B : Set} → (A → O → B) → (O → A) → O → B flipply f g o = f (g o) o record GetSetLens (O I : Set) : Set where -- Operations. field get : O → I set : I → O → O -- Laws. field set-set : ∀ {i j} → set i ∘ set j ≡ set i get-set : ∀ {i} → get ∘ set i ≡ const i set-get : flipply set get ≡ id -- ∀ {o} → set (get o) o ≡ o -- A variant of GetSetLens record GetsModifyLens (O I : Set) : Set₁ where -- Operations. field gets : ∀ {J} → (I → J) → O → J modify : (I → I) → O → O -- Laws. field -- modify is an endofunctor in the discrete category I. modify-id : modify id ≡ id modify-∘ : ∀ {f g} → modify g ∘ modify f ≡ modify (g ∘ f) -- Free theorem for gets. gets-free : ∀ {J K} {f : J → K} (g : I → J) → f ∘ gets g ≡ gets (f ∘ g) gets-modify : ∀ {J} {f : I → I} {g : I → J} → gets g ∘ modify f ≡ gets (g ∘ f) -- set (get o) o ≡ o -- modify (const (gets id o)) o ≡ o -- modify (const (gets f o)) o ≡ modify f o -- modify (λ i → g (gets f o) i) o ≡ modify (λ i → g i (f i)) o -- apply (flip modify) (g ∘ gets f) ≡ modify (apply g f) modify-gets : ∀ {J} {g : I → J} (s : J → I → I) → flipply modify (s ∘ gets g) ≡ modify (flipply s g) getSetLens : GetSetLens O I getSetLens = record { get = gets id ; set = modify ∘ const ; set-set = modify-∘ ; get-set = get-set ; set-get = set-get } where get : O → I get = gets id set : I → O → O set = modify ∘ const get-set : ∀ {i} → get ∘ set i ≡ const i get-set {i} = begin get ∘ set i ≡⟨⟩ gets id ∘ modify (const i) ≡⟨ gets-modify ⟩ gets (id ∘ const i) ≡⟨⟩ gets (const i ∘ id) ≡⟨ sym (gets-free id) ⟩ const i ∘ get ≡⟨⟩ const i ∎ set-get : flipply set get ≡ id set-get = begin flipply set get ≡⟨⟩ flipply (modify ∘ const) (gets id) ≡⟨⟩ flipply modify (const ∘ gets id) ≡⟨ modify-gets const ⟩ modify (flipply const id) ≡⟨⟩ modify id ≡⟨ modify-id ⟩ id ∎ open GetSetLens getSetLens public -- van Laarhoven lenses record Lens (O I : Set) : Set₁ where -- Single operation: Functorial modify. field modify! : ∀ (FF : Functor) → let F = Functor.F FF in (I → F I) → (O → F O) -- Laws -- 0. Free theorem: field modify!-free : (FF GG : Functor) (N : NatTrans FF GG) → let open Functor FF using () renaming (F to F; map to mapF) in let open Functor GG using () renaming (F to G; map to mapG) in let open NatTrans N using () renaming (eta to η) in (f : I → F I) → η ∘ modify! FF f ≡ modify! GG (η ∘ f) -- 1. Identity law: -- Generalize? modify!-id : modify! Id id ≡ id -- 2. Composition law: modify!-∘ : (FF GG : Functor) → let open Functor FF using () renaming (F to F; map to mapF) in let open Functor GG using () renaming (F to G; map to mapG) in {f : I → F I} → {g : I → G I} → mapF (modify! GG g) ∘ modify! FF f ≡ modify! (FF • GG) (mapF g ∘ f) getsModifyLens : GetsModifyLens O I getsModifyLens = record { gets = gets ; modify = modify ; modify-id = modify!-id ; modify-∘ = modify-∘ ; gets-free = λ {J}{K}{f} g → gets-free f g ; gets-modify = gets-modify ; modify-gets = modify-gets } where -- gets and modify gets : ∀ {J} → (I → J) → (O → J) gets {J = J} = modify! (Const J) modify : (I → I) → O → O modify = modify! Id -- Laws of gets and modify. modify-∘ : ∀ {f g} → modify g ∘ modify f ≡ modify (g ∘ f) modify-∘ = modify!-∘ Id Id gets-free : ∀ {J K} (f : J → K) (g : I → J) → f ∘ gets g ≡ gets (f ∘ g) gets-free {J = J}{K = K} f g = modify!-free (Const J) (Const K) (ConstNat f) g gets-modify : ∀ {J} {f : I → I} {g : I → J} → gets g ∘ modify f ≡ gets (g ∘ f) gets-modify {J = J} = modify!-∘ Id (Const J) modify-gets : ∀ {J} {g : I → J} (s : J → I → I) → flipply modify (s ∘ gets g) ≡ modify (flipply s g) modify-gets = {!!} -- TODO! Difficult. open GetsModifyLens getsModifyLens public -- Every GetSetLens is a van Laarhoven lens ?? lensFromGetSet : ∀ {O I} → GetSetLens O I → Lens O I lensFromGetSet {O = O}{I = I} l = record { modify! = modify! ; modify!-free = {!!} ; modify!-id = set-get ; modify!-∘ = modify!-∘ } where open GetSetLens l module Define-modify! (FF : Functor) where open Functor FF modify! : (I → F I) → (O → F O) modify! f = apply (map ∘ flip set) (f ∘ get) derivation-of-modify : ∀ f → modify! f ≡ apply (map ∘ flip set) (f ∘ get) derivation-of-modify f = begin modify! f ≡⟨⟩ (λ o → f (get o) <&> λ i → set i o) ≡⟨⟩ (λ o → ((λ o → map (λ i → set i o)) o) ((f ∘ get) o)) ≡⟨⟩ apply (λ o → map (λ i → set i o)) (f ∘ get) ≡⟨⟩ apply (λ o → map (flip set o)) (f ∘ get) ≡⟨⟩ apply (map ∘ flip set) (f ∘ get) ∎ open Define-modify! modify!-free : (FF GG : Functor) (N : NatTrans FF GG) → let open Functor FF using () renaming (F to F; map to mapF) in let open Functor GG using () renaming (F to G; map to mapG) in let open NatTrans N using () renaming (eta to η) in (f : I → F I) → η ∘ modify! FF f ≡ modify! GG (η ∘ f) modify!-free FF GG N f = fun-ext λ o → begin η (modify! FF f o) ≡⟨⟩ η (mapF (λ i → set i o) (f (get o))) ≡⟨ app-naturality (flip set) (f ∘ get) o ⟩ mapG (λ i → set i o) (η (f (get o))) ≡⟨⟩ modify! GG (η ∘ f) o ∎ where open Functor FF using () renaming (F to F; map to mapF; map-∘ to mapF-∘) open Functor GG using () renaming (F to G; map to mapG; map-∘ to mapG-∘) open NatTrans N using (app-naturality) renaming (eta to η) modify!-id : modify! Id id ≡ id modify!-id = fun-ext λ o → begin (Functor.map Id) (λ i → set i o) (id (get o)) ≡⟨⟩ (λ i → set i o) (get o) ≡⟨⟩ set (get o) o ≡⟨⟩ flipply set get o ≡⟨ app-≡ o set-get ⟩ id o ≡⟨⟩ o ∎ modify!-∘ : (FF GG : Functor) → let open Functor FF using () renaming (F to F; map to mapF) in let open Functor GG using () renaming (F to G; map to mapG) in {f : I → F I} → {g : I → G I} → mapF (modify! GG g) ∘ modify! FF f ≡ modify! (FF • GG) (mapF g ∘ f) modify!-∘ FF GG {f = f} {g = g} = fun-ext λ o → begin mapF (modify! GG g) (modify! FF f o) ≡⟨⟩ mapF (λ o → mapG (λ i → set i o) (g (get o))) (mapF (λ i → set i o) (f (get o))) ≡⟨ app-≡ _ (sym mapF-∘) ⟩ mapF ((λ o → mapG (λ i → set i o) (g (get o))) ∘ (λ i → set i o))(f (get o)) ≡⟨⟩ mapF (λ j → mapG (λ i → set i (set j o)) (g (get (set j o)))) (f (get o)) ≡⟨ {!set-set!} ⟩ mapF (λ j → mapG (λ i → set i o) (g (get (set j o)))) (f (get o)) ≡⟨ {!get-set!} ⟩ mapF (λ j → mapG (λ i → set i o) (g j)) (f (get o)) ≡⟨⟩ mapF (mapG (λ i → set i o) ∘ g) (f (get o)) ≡⟨ app-≡ _ mapF-∘ ⟩ mapF (mapG (λ i → set i o)) (mapF g (f (get o))) ≡⟨⟩ mapFG (λ i → set i o) (mapF g (f (get o))) ≡⟨⟩ modify! (FF • GG) (mapF g ∘ f) o ∎ where open Functor FF using () renaming (F to F; map to mapF; map-∘ to mapF-∘) open Functor GG using () renaming (F to G; map to mapG; map-∘ to mapG-∘) mapFG = Functor.map (FF • GG) {- Lens operations: get : Lens I O → O → I get l o = l (mapK I) id o set : Len I O → I → O → O set l i o = l mapId (const i) o Lens laws: a. set-set set l i ∘ set l j = set l i Prove from 2. b. get-set get l (set l i o) = i Prove from 0. + 2. c. set-get set l o (get l o) = o This states that set is surjective, it is equivalent to ∀ o → ∃₂ λ i o′ → set l o′ i = o Independence of 0, 1, 2. ----------------------- A. 0 does not imply 2. Counterexample: -- An impossible lens, since ⊤ contains nothing, especially not Bool l : Lens Bool ⊤ l map f = map (const tt) (f true) ( get l _ = false ) ( set l _ _ = tt ) does not satisfy 2. (Lens composition) mapId (l (mapK Bool) id) ∘ l mapId not = const ((mapK Bool) (const tt) true) = const true l (mapK Bool) (id ∘ not) = const ((mapK Bool) (const tt) (not true) = const false B. 0, 2 are not sufficent to prove c. Counterexample: -- Lens focusing on nothing. l : Lens ⊤ Bool l map f _ = map (const true) (f tt) ( get l _ = tt ) ( set l _ _ = true ) so, set l false (get l false) /= false Proof of 2: -}
-- This module closely follows a section of Martín Escardó's HoTT lecture notes: -- https://www.cs.bham.ac.uk/~mhe/HoTT-UF-in-Agda-Lecture-Notes/HoTT-UF-Agda.html#unicharac {-# OPTIONS --without-K #-} module Util.HoTT.Univalence.ContrFormulation where open import Util.Data.Product using (map₂) open import Util.Prelude open import Util.HoTT.Equiv open import Util.HoTT.HLevel.Core open import Util.HoTT.Singleton open import Util.HoTT.Univalence.Axiom open import Util.HoTT.Univalence.Statement private variable α β γ : Level UnivalenceContr : ∀ α → Set (lsuc α) UnivalenceContr α = (A : Set α) → IsContr (Σ[ B ∈ Set α ] (A ≃ B)) UnivalenceProp : ∀ α → Set (lsuc α) UnivalenceProp α = (A : Set α) → IsProp (Σ[ B ∈ Set α ] (A ≃ B)) abstract IsEquiv→Σ-IsContr : {A : Set α} {B : A → Set β} (x : A) → (f : ∀ y → x ≡ y → B y) → (∀ y → IsEquiv (f y)) → IsContr (Σ A B) IsEquiv→Σ-IsContr {A = A} {B = B} x f f-equiv = ≃-pres-IsContr Singleton≃ΣB IsContr-Singleton′ where ≡≃B : ∀ y → (x ≡ y) ≃ B y ≡≃B y .forth = f y ≡≃B y .isEquiv = f-equiv y Singleton≃ΣB : Singleton′ x ≃ Σ A B Singleton≃ΣB = Σ-≃⁺ ≡≃B Σ-IsContr→IsEquiv : {A : Set α} {B : A → Set β} (x : A) → (f : ∀ y → x ≡ y → B y) → IsContr (Σ A B) → ∀ y → IsEquiv (f y) Σ-IsContr→IsEquiv {A = A} {B = B} x f Σ-contr = IsEquiv-map₂-f→IsEquiv-f f f-equiv where f-equiv : IsEquiv (map₂ f) f-equiv = IsContr→IsEquiv IsContr-Singleton′ Σ-contr (map₂ f) Univalence→UnivalenceContr : Univalence α → UnivalenceContr α Univalence→UnivalenceContr ua A = IsEquiv→Σ-IsContr A (λ B → ≡→≃) (λ B → ua) UnivalenceContr→Univalence : UnivalenceContr α → Univalence α UnivalenceContr→Univalence ua {A} {B} = Σ-IsContr→IsEquiv A (λ B → ≡→≃) (ua A) B univalenceContr : (A : Set α) → IsContr (Σ[ B ∈ Set α ] (A ≃ B)) univalenceContr = Univalence→UnivalenceContr univalence UnivalenceContr→UnivalenceProp : UnivalenceContr α → UnivalenceProp α UnivalenceContr→UnivalenceProp ua = IsContr→IsProp ∘ ua UnivalenceProp→UnivalenceContr : UnivalenceProp α → UnivalenceContr α UnivalenceProp→UnivalenceContr ua A = IsProp∧Pointed→IsContr (ua A) (A , ≃-refl) Univalence→UnivalenceProp : Univalence α → UnivalenceProp α Univalence→UnivalenceProp = UnivalenceContr→UnivalenceProp ∘ Univalence→UnivalenceContr UnivalenceProp→Univalence : UnivalenceProp α → Univalence α UnivalenceProp→Univalence = UnivalenceContr→Univalence ∘ UnivalenceProp→UnivalenceContr univalenceProp : ∀ {α} → UnivalenceProp α univalenceProp = Univalence→UnivalenceProp univalence
{-# OPTIONS --safe --no-sized-types #-} open import Agda.Builtin.Size record Stream (A : Set) (i : Size) : Set where coinductive field head : A tail : {j : Size< i} → Stream A j open Stream destroy-guardedness : ∀ {A i} → Stream A i → Stream A i destroy-guardedness xs .head = xs .head destroy-guardedness xs .tail = xs .tail repeat : ∀ {A i} → A → Stream A i repeat x .head = x repeat x .tail = destroy-guardedness (repeat x)
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Algebra.Group.Notation where open import Cubical.Foundations.Prelude open import Cubical.Foundations.HLevels open import Cubical.Algebra.Group.Base module GroupNotationG {ℓ : Level} ((_ , G) : Group {ℓ}) where 0ᴳ = GroupStr.0g G _+ᴳ_ = GroupStr._+_ G -ᴳ_ = GroupStr.-_ G _-ᴳ_ = GroupStr._-_ G lIdᴳ = GroupStr.lid G rIdᴳ = GroupStr.rid G lCancelᴳ = GroupStr.invl G rCancelᴳ = GroupStr.invr G assocᴳ = GroupStr.assoc G setᴳ = GroupStr.is-set G module GroupNotationᴴ {ℓ : Level} ((_ , G) : Group {ℓ}) where 0ᴴ = GroupStr.0g G _+ᴴ_ = GroupStr._+_ G -ᴴ_ = GroupStr.-_ G _-ᴴ_ = GroupStr._-_ G lIdᴴ = GroupStr.lid G rIdᴴ = GroupStr.rid G lCancelᴴ = GroupStr.invl G rCancelᴴ = GroupStr.invr G assocᴴ = GroupStr.assoc G setᴴ = GroupStr.is-set G module GroupNotation₀ {ℓ : Level} ((_ , G) : Group {ℓ}) where 0₀ = GroupStr.0g G _+₀_ = GroupStr._+_ G -₀_ = GroupStr.-_ G _-₀_ = GroupStr._-_ G lId₀ = GroupStr.lid G rId₀ = GroupStr.rid G lCancel₀ = GroupStr.invl G rCancel₀ = GroupStr.invr G assoc₀ = GroupStr.assoc G set₀ = GroupStr.is-set G module GroupNotation₁ {ℓ : Level} ((_ , G) : Group {ℓ}) where 0₁ = GroupStr.0g G _+₁_ = GroupStr._+_ G -₁_ = GroupStr.-_ G _-₁_ = GroupStr._-_ G lId₁ = GroupStr.lid G rId₁ = GroupStr.rid G lCancel₁ = GroupStr.invl G rCancel₁ = GroupStr.invr G assoc₁ = GroupStr.assoc G set₁ = GroupStr.is-set G
{-# OPTIONS --without-K --rewriting #-} module Set where
{-# OPTIONS --without-K --safe #-} -- Enriched category over a Monoidal category V open import Categories.Category using (module Commutation) renaming (Category to Setoid-Category) open import Categories.Category.Monoidal using (Monoidal) module Categories.Enriched.Category {o ℓ e} {V : Setoid-Category o ℓ e} (M : Monoidal V) where open import Level open import Categories.Category.Monoidal.Reasoning M open import Categories.Category.Monoidal.Utilities M using (module Shorthands) open import Categories.Morphism.Reasoning V using (pullˡ; pullʳ; pushˡ) open Setoid-Category V renaming (Obj to ObjV; id to idV) using (_⇒_; _∘_) open Commutation V open Monoidal M using (unit; _⊗₀_; _⊗₁_; module associator; module unitorˡ; module unitorʳ; assoc-commute-from) open Shorthands record Category (v : Level) : Set (o ⊔ ℓ ⊔ e ⊔ suc v) where field Obj : Set v hom : (A B : Obj) → ObjV id : {A : Obj} → unit ⇒ hom A A ⊚ : {A B C : Obj} → hom B C ⊗₀ hom A B ⇒ hom A C ⊚-assoc : {A B C D : Obj} → [ (hom C D ⊗₀ hom B C) ⊗₀ hom A B ⇒ hom A D ]⟨ ⊚ ⊗₁ idV ⇒⟨ hom B D ⊗₀ hom A B ⟩ ⊚ ≈ associator.from ⇒⟨ hom C D ⊗₀ (hom B C ⊗₀ hom A B) ⟩ idV ⊗₁ ⊚ ⇒⟨ hom C D ⊗₀ hom A C ⟩ ⊚ ⟩ unitˡ : {A B : Obj} → [ unit ⊗₀ hom A B ⇒ hom A B ]⟨ id ⊗₁ idV ⇒⟨ hom B B ⊗₀ hom A B ⟩ ⊚ ≈ unitorˡ.from ⟩ unitʳ : {A B : Obj} → [ hom A B ⊗₀ unit ⇒ hom A B ]⟨ idV ⊗₁ id ⇒⟨ hom A B ⊗₀ hom A A ⟩ ⊚ ≈ unitorʳ.from ⟩ -- A version of ⊚-assoc using generalized hom-variables. -- -- In this version of associativity, the generalized variables f, g -- and h represent V-morphisms, or rather, morphism-valued maps, -- such as V-natural transformations or V-functorial actions. This -- version is therefore well-suited for proving derived equations, -- such as functorial laws or commuting diagrams, that involve such -- maps. For examples, see Underlying.assoc below, or the modules -- Enriched.Functor and Enriched.NaturalTransformation. ⊚-assoc-var : {X Y Z : ObjV} {A B C D : Obj} {f : X ⇒ hom C D} {g : Y ⇒ hom B C} {h : Z ⇒ hom A B} → [ (X ⊗₀ Y) ⊗₀ Z ⇒ hom A D ]⟨ (⊚ ∘ f ⊗₁ g) ⊗₁ h ⇒⟨ hom B D ⊗₀ hom A B ⟩ ⊚ ≈ associator.from ⇒⟨ X ⊗₀ (Y ⊗₀ Z) ⟩ f ⊗₁ (⊚ ∘ g ⊗₁ h) ⇒⟨ hom C D ⊗₀ hom A C ⟩ ⊚ ⟩ ⊚-assoc-var {f = f} {g} {h} = begin ⊚ ∘ (⊚ ∘ f ⊗₁ g) ⊗₁ h ≈⟨ refl⟩∘⟨ split₁ˡ ⟩ ⊚ ∘ ⊚ ⊗₁ idV ∘ (f ⊗₁ g) ⊗₁ h ≈⟨ pullˡ ⊚-assoc ⟩ (⊚ ∘ idV ⊗₁ ⊚ ∘ α⇒) ∘ (f ⊗₁ g) ⊗₁ h ≈⟨ pullʳ (pullʳ assoc-commute-from) ⟩ ⊚ ∘ idV ⊗₁ ⊚ ∘ f ⊗₁ (g ⊗₁ h) ∘ α⇒ ≈˘⟨ refl⟩∘⟨ pushˡ split₂ˡ ⟩ ⊚ ∘ f ⊗₁ (⊚ ∘ g ⊗₁ h) ∘ α⇒ ∎ -- The usual shorthand for hom-objects of an arbitrary category. infix 15 _[_,_] _[_,_] : ∀ {c} (C : Category c) (X Y : Category.Obj C) → ObjV _[_,_] = Category.hom
{- This second-order term syntax was created from the following second-order syntax description: syntax Combinatory | CL type * : 0-ary term app : * * -> * | _$_ l20 i : * k : * s : * theory (IA) x |> app (i, x) = x (KA) x y |> app (app(k, x), y) = x (SA) x y z |> app (app (app (s, x), y), z) = app (app(x, z), app(y, z)) -} module Combinatory.Syntax where open import SOAS.Common open import SOAS.Context open import SOAS.Variable open import SOAS.Families.Core open import SOAS.Construction.Structure open import SOAS.ContextMaps.Inductive open import SOAS.Metatheory.Syntax open import Combinatory.Signature private variable Γ Δ Π : Ctx α : *T 𝔛 : Familyₛ -- Inductive term declaration module CL:Terms (𝔛 : Familyₛ) where data CL : Familyₛ where var : ℐ ⇾̣ CL mvar : 𝔛 α Π → Sub CL Π Γ → CL α Γ _$_ : CL * Γ → CL * Γ → CL * Γ I : CL * Γ K : CL * Γ S : CL * Γ infixl 20 _$_ open import SOAS.Metatheory.MetaAlgebra ⅀F 𝔛 CLᵃ : MetaAlg CL CLᵃ = record { 𝑎𝑙𝑔 = λ where (appₒ ⋮ a , b) → _$_ a b (iₒ ⋮ _) → I (kₒ ⋮ _) → K (sₒ ⋮ _) → S ; 𝑣𝑎𝑟 = var ; 𝑚𝑣𝑎𝑟 = λ 𝔪 mε → mvar 𝔪 (tabulate mε) } module CLᵃ = MetaAlg CLᵃ module _ {𝒜 : Familyₛ}(𝒜ᵃ : MetaAlg 𝒜) where open MetaAlg 𝒜ᵃ 𝕤𝕖𝕞 : CL ⇾̣ 𝒜 𝕊 : Sub CL Π Γ → Π ~[ 𝒜 ]↝ Γ 𝕊 (t ◂ σ) new = 𝕤𝕖𝕞 t 𝕊 (t ◂ σ) (old v) = 𝕊 σ v 𝕤𝕖𝕞 (mvar 𝔪 mε) = 𝑚𝑣𝑎𝑟 𝔪 (𝕊 mε) 𝕤𝕖𝕞 (var v) = 𝑣𝑎𝑟 v 𝕤𝕖𝕞 (_$_ a b) = 𝑎𝑙𝑔 (appₒ ⋮ 𝕤𝕖𝕞 a , 𝕤𝕖𝕞 b) 𝕤𝕖𝕞 I = 𝑎𝑙𝑔 (iₒ ⋮ tt) 𝕤𝕖𝕞 K = 𝑎𝑙𝑔 (kₒ ⋮ tt) 𝕤𝕖𝕞 S = 𝑎𝑙𝑔 (sₒ ⋮ tt) 𝕤𝕖𝕞ᵃ⇒ : MetaAlg⇒ CLᵃ 𝒜ᵃ 𝕤𝕖𝕞 𝕤𝕖𝕞ᵃ⇒ = record { ⟨𝑎𝑙𝑔⟩ = λ{ {t = t} → ⟨𝑎𝑙𝑔⟩ t } ; ⟨𝑣𝑎𝑟⟩ = refl ; ⟨𝑚𝑣𝑎𝑟⟩ = λ{ {𝔪 = 𝔪}{mε} → cong (𝑚𝑣𝑎𝑟 𝔪) (dext (𝕊-tab mε)) } } where open ≡-Reasoning ⟨𝑎𝑙𝑔⟩ : (t : ⅀ CL α Γ) → 𝕤𝕖𝕞 (CLᵃ.𝑎𝑙𝑔 t) ≡ 𝑎𝑙𝑔 (⅀₁ 𝕤𝕖𝕞 t) ⟨𝑎𝑙𝑔⟩ (appₒ ⋮ _) = refl ⟨𝑎𝑙𝑔⟩ (iₒ ⋮ _) = refl ⟨𝑎𝑙𝑔⟩ (kₒ ⋮ _) = refl ⟨𝑎𝑙𝑔⟩ (sₒ ⋮ _) = refl 𝕊-tab : (mε : Π ~[ CL ]↝ Γ)(v : ℐ α Π) → 𝕊 (tabulate mε) v ≡ 𝕤𝕖𝕞 (mε v) 𝕊-tab mε new = refl 𝕊-tab mε (old v) = 𝕊-tab (mε ∘ old) v module _ (g : CL ⇾̣ 𝒜)(gᵃ⇒ : MetaAlg⇒ CLᵃ 𝒜ᵃ g) where open MetaAlg⇒ gᵃ⇒ 𝕤𝕖𝕞! : (t : CL α Γ) → 𝕤𝕖𝕞 t ≡ g t 𝕊-ix : (mε : Sub CL Π Γ)(v : ℐ α Π) → 𝕊 mε v ≡ g (index mε v) 𝕊-ix (x ◂ mε) new = 𝕤𝕖𝕞! x 𝕊-ix (x ◂ mε) (old v) = 𝕊-ix mε v 𝕤𝕖𝕞! (mvar 𝔪 mε) rewrite cong (𝑚𝑣𝑎𝑟 𝔪) (dext (𝕊-ix mε)) = trans (sym ⟨𝑚𝑣𝑎𝑟⟩) (cong (g ∘ mvar 𝔪) (tab∘ix≈id mε)) 𝕤𝕖𝕞! (var v) = sym ⟨𝑣𝑎𝑟⟩ 𝕤𝕖𝕞! (_$_ a b) rewrite 𝕤𝕖𝕞! a | 𝕤𝕖𝕞! b = sym ⟨𝑎𝑙𝑔⟩ 𝕤𝕖𝕞! I = sym ⟨𝑎𝑙𝑔⟩ 𝕤𝕖𝕞! K = sym ⟨𝑎𝑙𝑔⟩ 𝕤𝕖𝕞! S = sym ⟨𝑎𝑙𝑔⟩ -- Syntax instance for the signature CL:Syn : Syntax CL:Syn = record { ⅀F = ⅀F ; ⅀:CS = ⅀:CompatStr ; mvarᵢ = CL:Terms.mvar ; 𝕋:Init = λ 𝔛 → let open CL:Terms 𝔛 in record { ⊥ = CL ⋉ CLᵃ ; ⊥-is-initial = record { ! = λ{ {𝒜 ⋉ 𝒜ᵃ} → 𝕤𝕖𝕞 𝒜ᵃ ⋉ 𝕤𝕖𝕞ᵃ⇒ 𝒜ᵃ } ; !-unique = λ{ {𝒜 ⋉ 𝒜ᵃ} (f ⋉ fᵃ⇒) {x = t} → 𝕤𝕖𝕞! 𝒜ᵃ f fᵃ⇒ t } } } } -- Instantiation of the syntax and metatheory open Syntax CL:Syn public open CL:Terms public open import SOAS.Families.Build public open import SOAS.Syntax.Shorthands CLᵃ public open import SOAS.Metatheory CL:Syn public
{-# OPTIONS --without-K --safe #-} module Definition.Conversion.Consequences.Completeness where open import Definition.Untyped open import Definition.Typed open import Definition.Conversion open import Definition.Conversion.EqRelInstance open import Definition.LogicalRelation open import Definition.LogicalRelation.Substitution open import Definition.LogicalRelation.Substitution.Escape open import Definition.LogicalRelation.Fundamental open import Tools.Product -- Algorithmic equality is derivable from judgemental equality of types. completeEq : ∀ {A B Γ} → Γ ⊢ A ≡ B → Γ ⊢ A [conv↑] B completeEq A≡B = let [Γ] , [A] , [B] , [A≡B] = fundamentalEq A≡B in escapeEqᵛ [Γ] [A] [A≡B] -- Algorithmic equality is derivable from judgemental equality of terms. completeEqTerm : ∀ {t u A Γ} → Γ ⊢ t ≡ u ∷ A → Γ ⊢ t [conv↑] u ∷ A completeEqTerm t≡u = let [Γ] , modelsTermEq [A] [t] [u] [t≡u] = fundamentalTermEq t≡u in escapeEqTermᵛ [Γ] [A] [t≡u]
------------------------------------------------------------------------------ -- All the Peano arithmetic modules ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module PA.Everything where open import PA.Axiomatic.Mendelson.Base open import PA.Axiomatic.Mendelson.Base.Consistency.Axioms open import PA.Axiomatic.Mendelson.PropertiesATP open import PA.Axiomatic.Mendelson.PropertiesI open import PA.Axiomatic.Mendelson.Relation.Binary.EqReasoning open import PA.Axiomatic.Mendelson.Relation.Binary.PropositionalEqualityI open import PA.Axiomatic.Mendelson.Relation.Binary.PropositionalEqualityATP open import PA.Axiomatic.Standard.Base open import PA.Axiomatic.Standard.Base.Consistency.Axioms open import PA.Axiomatic.Standard.PropertiesATP open import PA.Axiomatic.Standard.PropertiesI open import PA.Inductive.Base open import PA.Inductive.Base.Core open import PA.Inductive.Existential open import PA.Inductive.PropertiesATP open import PA.Inductive.PropertiesI open import PA.Inductive.PropertiesByInduction open import PA.Inductive.PropertiesByInductionATP open import PA.Inductive.PropertiesByInductionI open import PA.Inductive.Relation.Binary.EqReasoning open import PA.Inductive.Relation.Binary.PropositionalEquality open import PA.Inductive2Mendelson open import PA.Inductive2Standard
module Computability.Data.Fin.Opposite where open import Computability.Prelude open import Data.Nat using (_≤_; _<_; s≤s; z≤n) open import Data.Nat.Properties using (≤-step) open import Data.Fin using (Fin; zero; suc; inject₁; fromℕ; fromℕ<; toℕ; opposite) opposite-fromℕ : ∀ k → opposite (fromℕ k) ≡ zero opposite-fromℕ zero = refl opposite-fromℕ (suc k) rewrite opposite-fromℕ k = refl opposite-inject₁-suc : ∀{k}(i : Fin k) → opposite (inject₁ i) ≡ suc (opposite i) opposite-inject₁-suc zero = refl opposite-inject₁-suc (suc i) rewrite opposite-inject₁-suc i = refl opposite-opposite : ∀{k}(i : Fin k) → opposite (opposite i) ≡ i opposite-opposite {suc k} zero rewrite opposite-fromℕ k = refl opposite-opposite (suc i) rewrite opposite-inject₁-suc (opposite i) | opposite-opposite i = refl opposite-fromℕ< : ∀ a b (lt : a < b) → opposite (fromℕ< (≤-step lt)) ≡ suc (opposite (fromℕ< lt)) opposite-fromℕ< zero .(suc _) (s≤s le) = refl opposite-fromℕ< (suc a) .(suc _) (s≤s le) rewrite opposite-fromℕ< _ _ le = refl
module Type.Properties.Decidable.Proofs where open import Data open import Data.Proofs open import Data.Boolean using (if_then_else_) open import Data.Boolean.Stmt open import Data.Either as Either using (_‖_) open import Data.Tuple as Tuple using (_⨯_ ; _,_) open import Functional import Lvl open import Data.Boolean using (Bool ; 𝑇 ; 𝐹) import Data.Boolean.Operators open Data.Boolean.Operators.Programming open import Lang.Inspect open import Logic open import Logic.Classical open import Logic.Predicate open import Logic.Propositional open import Numeral.Natural open import Relator.Equals.Proofs.Equiv open import Type.Properties.Decidable open import Type.Properties.Empty open import Type.Properties.Inhabited open import Type.Properties.Singleton.Proofs open import Type private variable ℓ ℓₚ : Lvl.Level private variable A B C P Q R T : Type{ℓ} private variable b b₁ b₂ d : Bool private variable f : A → B module _ (P : Stmt{ℓ}) where decider-classical : ⦃ dec : Decider₀(P)(d) ⦄ → Classical(P) Classical.excluded-middle (decider-classical ⦃ dec = dec ⦄) = elim(\_ → (P ∨ (¬ P))) [∨]-introₗ [∨]-introᵣ dec classical-decidable : ⦃ classical : Classical(P) ⦄ → Decidable(0)(P) ∃.witness classical-decidable = Either.isLeft(excluded-middle(P)) ∃.proof classical-decidable with excluded-middle(P) | inspect Either.isLeft(excluded-middle(P)) ... | Either.Left p | _ = true p ... | Either.Right np | _ = false np module _ {ℓ₂} {x y : R} {Pred : (P ∨ (¬ P)) → R → Type{ℓ₂}} where decider-if-intro : ∀{f} ⦃ dec : Decider₀(P)(f) ⦄ → ((p : P) → Pred(Either.Left p)(x)) → ((np : (¬ P)) → Pred(Either.Right np)(y)) → Pred(excluded-middle(P) ⦃ decider-classical ⦄)(if f then x else y) decider-if-intro {f = 𝑇} ⦃ true p ⦄ fp _ = fp p decider-if-intro {f = 𝐹} ⦃ false np ⦄ _ fnp = fnp np decider-to-classical : ⦃ dec : Decider₀(P)(d) ⦄ → Classical(P) decider-to-classical{P = P} = decider-classical(P) classical-to-decidable : ⦃ classical : Classical(P) ⦄ → Decidable(0)(P) classical-to-decidable{P = P} = classical-decidable(P) classical-to-decider : ⦃ classical : Classical(P) ⦄ → Decider(0)(P)([∃]-witness classical-to-decidable) classical-to-decider{P = P} = [∃]-proof classical-to-decidable decider-true : ⦃ dec : Decider₀(P)(b) ⦄ → (P ↔ IsTrue(b)) decider-true ⦃ dec = true p ⦄ = [↔]-intro (const p) (const <>) decider-true ⦃ dec = false np ⦄ = [↔]-intro empty (empty ∘ np) decider-false : ⦃ dec : Decider₀(P)(b) ⦄ → ((P → Empty{ℓ}) ↔ IsFalse(b)) decider-false ⦃ dec = true p ⦄ = [↔]-intro empty (empty ∘ apply p) decider-false ⦃ dec = false np ⦄ = [↔]-intro (const(empty ∘ np)) (const <>) isempty-decider : ⦃ empty : IsEmpty(P) ⦄ → Decider₀(P)(𝐹) isempty-decider ⦃ intro p ⦄ = false (empty ∘ p) inhabited-decider : ⦃ inhab : (◊ P) ⦄ → Decider₀(P)(𝑇) inhabited-decider ⦃ intro ⦃ p ⦄ ⦄ = true p empty-decider : Decider₀(Empty{ℓ})(𝐹) empty-decider = isempty-decider unit-decider : Decider₀(Unit{ℓ})(𝑇) unit-decider = inhabited-decider ⦃ unit-is-pos ⦄ instance tuple-decider : ⦃ dec-P : Decider₀(P)(b₁) ⦄ → ⦃ dec-Q : Decider₀(Q)(b₂) ⦄ → Decider₀(P ⨯ Q)(b₁ && b₂) tuple-decider ⦃ true p ⦄ ⦃ true q ⦄ = true(p , q) tuple-decider ⦃ true p ⦄ ⦃ false nq ⦄ = false(nq ∘ Tuple.right) tuple-decider ⦃ false np ⦄ ⦃ true q ⦄ = false(np ∘ Tuple.left) tuple-decider ⦃ false np ⦄ ⦃ false nq ⦄ = false(np ∘ Tuple.left) instance either-decider : ⦃ dec-P : Decider₀(P)(b₁) ⦄ → ⦃ dec-Q : Decider₀(Q)(b₂) ⦄ → Decider₀(P ‖ Q)(b₁ || b₂) either-decider ⦃ true p ⦄ ⦃ true q ⦄ = true (Either.Left p) either-decider ⦃ true p ⦄ ⦃ false nq ⦄ = true (Either.Left p) either-decider ⦃ false np ⦄ ⦃ true q ⦄ = true (Either.Right q) either-decider ⦃ false np ⦄ ⦃ false nq ⦄ = false (Either.elim np nq) instance function-decider : ⦃ dec-P : Decider₀(P)(b₁) ⦄ → ⦃ dec-Q : Decider₀(Q)(b₂) ⦄ → Decider₀(P → Q)((! b₁) || b₂) function-decider ⦃ true p ⦄ ⦃ true q ⦄ = true (const q) function-decider ⦃ true p ⦄ ⦃ false nq ⦄ = false (apply p ∘ (nq ∘_)) function-decider ⦃ false np ⦄ ⦃ true q ⦄ = true (const q) function-decider ⦃ false np ⦄ ⦃ false nq ⦄ = true (empty ∘ np) instance not-decider : ⦃ dec : Decider₀(P)(b) ⦄ → Decider₀(¬ P)(! b) not-decider = function-decider {b₂ = 𝐹} ⦃ dec-Q = empty-decider ⦄ instance IsTrue-decider : Decider₀(IsTrue(b))(b) IsTrue-decider {𝑇} = true <> IsTrue-decider {𝐹} = false id
{-# OPTIONS --cubical --safe #-} module Data.List.Properties where open import Data.List open import Prelude open import Data.Fin map-length : (f : A → B) (xs : List A) → length xs ≡ length (map f xs) map-length f [] _ = zero map-length f (x ∷ xs) i = suc (map-length f xs i) map-ind : (f : A → B) (xs : List A) → PathP (λ i → Fin (map-length f xs i) → B) (f ∘ (xs !_)) (map f xs !_) map-ind f [] i () map-ind f (x ∷ xs) i f0 = f x map-ind f (x ∷ xs) i (fs n) = map-ind f xs i n tab-length : ∀ n (f : Fin n → A) → length (tabulate n f) ≡ n tab-length zero f _ = zero tab-length (suc n) f i = suc (tab-length n (f ∘ fs) i) tab-distrib : ∀ n (f : Fin n → A) m → ∃[ i ] (f i ≡ tabulate n f ! m) tab-distrib (suc n) f f0 = f0 , refl tab-distrib (suc n) f (fs m) = let i , p = tab-distrib n (f ∘ fs) m in fs i , p tab-id : ∀ n (f : Fin n → A) → PathP (λ i → Fin (tab-length n f i) → A) (_!_ (tabulate n f)) f tab-id zero f _ () tab-id (suc n) f i f0 = f f0 tab-id (suc n) f i (fs m) = tab-id n (f ∘ fs) i m
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2021, Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} import LibraBFT.Impl.Types.CryptoProxies as CryptoProxies import LibraBFT.Impl.Types.LedgerInfo as LedgerInfo import LibraBFT.Impl.Types.LedgerInfoWithSignatures as LedgerInfoWithSignatures import LibraBFT.Impl.Types.ValidatorSigner as ValidatorSigner import LibraBFT.Impl.Types.ValidatorVerifier as ValidatorVerifier open import LibraBFT.ImplShared.Consensus.Types open import LibraBFT.ImplShared.Consensus.Types.EpochIndep open import Optics.All open import Util.Prelude module LibraBFT.Impl.OBM.Genesis where ------------------------------------------------------------------------------ obmMkLedgerInfoWithEpochState : ValidatorSet → Either ErrLog LedgerInfo ------------------------------------------------------------------------------ obmMkGenesisLedgerInfoWithSignatures : List ValidatorSigner → ValidatorSet → Either ErrLog LedgerInfoWithSignatures obmMkGenesisLedgerInfoWithSignatures vss0 vs0 = do liwes ← obmMkLedgerInfoWithEpochState vs0 let sigs = fmap (λ vs → (vs ^∙ vsAuthor , ValidatorSigner.sign vs liwes)) vss0 pure $ foldl' (λ acc (a , sig) → CryptoProxies.addToLi a sig acc) (LedgerInfoWithSignatures.obmNewNoSigs liwes) sigs obmMkLedgerInfoWithEpochState vs = do li ← LedgerInfo.mockGenesis (just vs) vv ← ValidatorVerifier.from-e-abs vs pure (li & liCommitInfo ∙ biNextEpochState ?~ EpochState∙new (li ^∙ liEpoch) vv)
module PreludeInt where open import AlonzoPrelude import RTP int : Nat -> Int int = RTP.primNatToInt _+_ : Int -> Int -> Int _+_ = RTP.primIntAdd _-_ : Int -> Int -> Int _-_ = RTP.primIntSub _*_ : Int -> Int -> Int _*_ = RTP.primIntMul div : Int -> Int -> Int div = RTP.primIntDiv mod : Int -> Int -> Int mod = RTP.primIntMod
------------------------------------------------------------------------ -- Some theory of equivalences with erased "proofs", defined in terms -- of partly erased contractible fibres, developed using Cubical Agda ------------------------------------------------------------------------ -- This module instantiates and reexports code from -- Equivalence.Erased.Contractible-preimages. {-# OPTIONS --erased-cubical --safe #-} import Equality.Path as P module Equivalence.Erased.Contractible-preimages.Cubical {e⁺} (eq : ∀ {a p} → P.Equality-with-paths a p e⁺) where open P.Derived-definitions-and-properties eq open import Erased.Cubical eq import Equivalence.Erased.Contractible-preimages open Equivalence.Erased.Contractible-preimages equality-with-J public hiding (module []-cong) open Equivalence.Erased.Contractible-preimages.[]-cong equality-with-J instance-of-[]-cong-axiomatisation public
module Integer.Difference where open import Data.Product as Σ open import Data.Product.Relation.Pointwise.NonDependent open import Data.Unit open import Equality open import Natural as ℕ open import Quotient as / open import Relation.Binary open import Syntax infixl 6 _–_ pattern _–_ a b = _,_ a b ⟦ℤ⟧ = ℕ × ℕ ⟦ℤ²⟧ = ⟦ℤ⟧ × ⟦ℤ⟧ _≈_ : ⟦ℤ⟧ → ⟦ℤ⟧ → Set (a – b) ≈ (c – d) = a + d ≡ c + b ≈-refl : ∀ {x} → x ≈ x ≈-refl = refl ℤ = ⟦ℤ⟧ / _≈_ ℤ² = ⟦ℤ²⟧ / Pointwise _≈_ _≈_ instance ⟦ℤ⟧-Number : Number ⟦ℤ⟧ ⟦ℤ⟧-Number = record { Constraint = λ _ → ⊤ ; fromNat = λ x → x – 0 } ℤ-Number : Number ℤ ℤ-Number = record { Constraint = λ _ → ⊤ ; fromNat = λ x → ⟦ fromNat x ⟧ } ⟦ℤ⟧-Negative : Negative ⟦ℤ⟧ ⟦ℤ⟧-Negative = record { Constraint = λ _ → ⊤ ; fromNeg = λ x → 0 – x } ℤ-Negative : Negative ℤ ℤ-Negative = record { Constraint = λ _ → ⊤ ; fromNeg = λ x → ⟦ fromNeg x ⟧ } suc–suc-injective : ∀ a b → Path ℤ ⟦ suc a – suc b ⟧ ⟦ a – b ⟧ suc–suc-injective a b = equiv (suc a – suc b) (a – b) (sym (+-suc a b )) ⟦negate⟧ : ⟦ℤ⟧ → ⟦ℤ⟧ ⟦negate⟧ (a – b) = b – a negate : ℤ → ℤ negate = ⟦negate⟧ // λ where (a – b) (c – d) p → ⟨ +-comm b c ⟩ ≫ sym p ≫ ⟨ +-comm a d ⟩ ⟦plus⟧ : ⟦ℤ²⟧ → ⟦ℤ⟧ ⟦plus⟧ ((a – b) , (c – d)) = (a + c) – (d + b) plus : ℤ² → ℤ plus = ⟦plus⟧ // λ where ((a – b) , (c – d)) ((e – f) , (g – h)) (p , q) → (a + c) + (h + f) ≡⟨ sym (ℕ.+-assoc a _ _) ⟩ a + (c + (h + f)) ≡⟨ cong (a +_) (ℕ.+-assoc c _ _) ⟩ a + ((c + h) + f) ≡⟨ cong (λ z → a + (z + f)) q ⟩ a + ((g + d) + f) ≡⟨ cong (a +_) ⟨ ℕ.+-comm (g + d) _ ⟩ ⟩ a + (f + (g + d)) ≡⟨ ℕ.+-assoc a _ _ ⟩ (a + f) + (g + d) ≡⟨ cong (_+ (g + d)) p ⟩ (e + b) + (g + d) ≡⟨ ℕ.+-cross e _ _ _ ⟩ (e + g) + (b + d) ≡⟨ cong ((e + g) +_) ⟨ ℕ.+-comm b _ ⟩ ⟩ (e + g) + (d + b) ∎ instance ⟦ℤ⟧-plus-syntax : plus-syntax-simple ⟦ℤ⟧ ⟦ℤ⟧ ⟦ℤ⟧ ⟦ℤ⟧-plus-syntax = λ where ._+_ x y → ⟦plus⟧ (x , y) ⟦ℤ⟧-minus-syntax : minus-syntax-simple ⟦ℤ⟧ ⟦ℤ⟧ ⟦ℤ⟧ ⟦ℤ⟧-minus-syntax = λ where ._-_ x y → ⟦plus⟧ (x , ⟦negate⟧ y) ℕ-⟦ℤ⟧-minus-syntax : minus-syntax-simple ℕ ℕ ⟦ℤ⟧ ℕ-⟦ℤ⟧-minus-syntax = λ where ._-_ → _–_ ℤ-plus-syntax : plus-syntax-simple ℤ ℤ ℤ ℤ-plus-syntax = λ where ._+_ → /.uncurry refl refl plus ℤ-minus-syntax : minus-syntax-simple ℤ ℤ ℤ ℤ-minus-syntax = λ where ._-_ x y → x + negate y ℕ-ℤ-minus-syntax : minus-syntax-simple ℕ ℕ ℤ ℕ-ℤ-minus-syntax = λ where ._-_ x y → ⟦ x – y ⟧
module MissingTypeSignature where data Nat : Set where zero : Nat suc : Nat -> Nat pred zero = zero pred (suc n) = n
module ProofUtilities where -- open import Data.Nat hiding (_>_) open import StdLibStuff open import Syntax open import FSC mutual hn-left-i : {n : ℕ} {Γ-t : Ctx n} {Γ : FSC-Ctx n Γ-t} {α β : Type n} (m : ℕ) (S : Form Γ-t β → Form Γ-t α) (F : Form Γ-t β) (G : Form Γ-t α) → Γ ⊢ α ∋ S (headNorm m F) ↔ G → Γ ⊢ α ∋ S F ↔ G hn-left-i m S (app F H) G p = hn-left-i m (λ x → S (app x H)) F G (hn-left-i' m S (headNorm m F) H G p) hn-left-i _ _ (var _ _) _ p = p hn-left-i _ _ N _ p = p hn-left-i _ _ A _ p = p hn-left-i _ _ Π _ p = p hn-left-i _ _ i _ p = p hn-left-i _ _ (lam _ _) _ p = p hn-left-i' : {n : ℕ} {Γ-t : Ctx n} {Γ : FSC-Ctx n Γ-t} {α β γ : Type n} (m : ℕ) (S : Form Γ-t β → Form Γ-t α) (F : Form Γ-t (γ > β)) (H : Form Γ-t γ) (G : Form Γ-t α) → Γ ⊢ α ∋ S (headNorm' m F H) ↔ G → Γ ⊢ α ∋ S (app F H) ↔ G hn-left-i' (suc m) S (lam _ F) H G p with hn-left-i m S (sub H F) G p hn-left-i' (suc _) S (lam _ _) _ _ _ | p' = reduce-l {_} {_} {_} {_} {_} {_} {S} p' hn-left-i' 0 _ (lam _ _) _ _ p = p hn-left-i' zero _ (var _ _) _ _ p = p hn-left-i' (suc _) _ (var _ _) _ _ p = p hn-left-i' zero _ N _ _ p = p hn-left-i' (suc _) _ N _ _ p = p hn-left-i' zero _ A _ _ p = p hn-left-i' (suc _) _ A _ _ p = p hn-left-i' zero _ Π _ _ p = p hn-left-i' (suc _) _ Π _ _ p = p hn-left-i' zero _ i _ _ p = p hn-left-i' (suc _) _ i _ _ p = p hn-left-i' zero _ (app _ _) _ _ p = p hn-left-i' (suc _) _ (app _ _) _ _ p = p hn-left : {n : ℕ} {Γ-t : Ctx n} {Γ : FSC-Ctx n Γ-t} {α : Type n} (m : ℕ) (F : Form Γ-t α) (G : Form Γ-t α) → Γ ⊢ α ∋ headNorm m F ↔ G → Γ ⊢ α ∋ F ↔ G hn-left m F G p = hn-left-i m (λ x → x) F G p mutual hn-right-i : {n : ℕ} {Γ-t : Ctx n} {Γ : FSC-Ctx n Γ-t} {α β : Type n} (m : ℕ) (S : Form Γ-t β → Form Γ-t α) (F : Form Γ-t β) (G : Form Γ-t α) → Γ ⊢ α ∋ G ↔ S (headNorm m F) → Γ ⊢ α ∋ G ↔ S F hn-right-i m S (app F H) G p = hn-right-i m (λ x → S (app x H)) F G (hn-right-i' m S (headNorm m F) H G p) hn-right-i _ _ (var _ _) _ p = p hn-right-i _ _ N _ p = p hn-right-i _ _ A _ p = p hn-right-i _ _ Π _ p = p hn-right-i _ _ i _ p = p hn-right-i _ _ (lam _ _) _ p = p hn-right-i' : {n : ℕ} {Γ-t : Ctx n} {Γ : FSC-Ctx n Γ-t} {α β γ : Type n} (m : ℕ) (S : Form Γ-t β → Form Γ-t α) (F : Form Γ-t (γ > β)) (H : Form Γ-t γ) (G : Form Γ-t α) → Γ ⊢ α ∋ G ↔ S (headNorm' m F H) → Γ ⊢ α ∋ G ↔ S (app F H) hn-right-i' (suc m) S (lam _ F) H G p with hn-right-i m S (sub H F) G p hn-right-i' (suc _) S (lam _ _) _ _ _ | p' = reduce-r {_} {_} {_} {_} {_} {_} {S} p' hn-right-i' 0 _ (lam _ _) _ _ p = p hn-right-i' zero _ (var _ _) _ _ p = p hn-right-i' (suc _) _ (var _ _) _ _ p = p hn-right-i' zero _ N _ _ p = p hn-right-i' (suc _) _ N _ _ p = p hn-right-i' zero _ A _ _ p = p hn-right-i' (suc _) _ A _ _ p = p hn-right-i' zero _ Π _ _ p = p hn-right-i' (suc _) _ Π _ _ p = p hn-right-i' zero _ i _ _ p = p hn-right-i' (suc _) _ i _ _ p = p hn-right-i' zero _ (app _ _) _ _ p = p hn-right-i' (suc _) _ (app _ _) _ _ p = p hn-right : {n : ℕ} {Γ-t : Ctx n} {Γ : FSC-Ctx n Γ-t} {α : Type n} (m : ℕ) (F : Form Γ-t α) (G : Form Γ-t α) → Γ ⊢ α ∋ G ↔ headNorm m F → Γ ⊢ α ∋ G ↔ F hn-right m F G p = hn-right-i m (λ x → x) F G p mutual hn-succ-i : {n : ℕ} {Γ-t : Ctx n} {Γ : FSC-Ctx n Γ-t} {β : Type n} (m : ℕ) (S : Form Γ-t β → Form Γ-t $o) (F : Form Γ-t β) → Γ ⊢ S (headNorm m F) → Γ ⊢ S F hn-succ-i m S (app F H) p = hn-succ-i m (λ x → S (app x H)) F (hn-succ-i' m S (headNorm m F) H p) hn-succ-i _ _ (var _ _) p = p hn-succ-i _ _ N p = p hn-succ-i _ _ A p = p hn-succ-i _ _ Π p = p hn-succ-i _ _ i p = p hn-succ-i _ _ (lam _ _) p = p hn-succ-i' : {n : ℕ} {Γ-t : Ctx n} {Γ : FSC-Ctx n Γ-t} {β γ : Type n} (m : ℕ) (S : Form Γ-t β → Form Γ-t $o) (F : Form Γ-t (γ > β)) (H : Form Γ-t γ) → Γ ⊢ S (headNorm' m F H) → Γ ⊢ S (app F H) hn-succ-i' (suc m) S (lam _ F) H p with hn-succ-i m S (sub H F) p hn-succ-i' (suc _) S (lam _ _) _ _ | p' = reduce {_} {_} {_} {_} {_} {S} p' hn-succ-i' 0 _ (lam _ _) _ p = p hn-succ-i' zero _ (var _ _) _ p = p hn-succ-i' (suc _) _ (var _ _) _ p = p hn-succ-i' zero _ N _ p = p hn-succ-i' (suc _) _ N _ p = p hn-succ-i' zero _ A _ p = p hn-succ-i' (suc _) _ A _ p = p hn-succ-i' zero _ Π _ p = p hn-succ-i' (suc _) _ Π _ p = p hn-succ-i' zero _ i _ p = p hn-succ-i' (suc _) _ i _ p = p hn-succ-i' zero _ (app _ _) _ p = p hn-succ-i' (suc _) _ (app _ _) _ p = p hn-succ : {n : ℕ} {Γ-t : Ctx n} {Γ : FSC-Ctx n Γ-t} (m : ℕ) (F : Form Γ-t $o) → Γ ⊢ headNorm m F → Γ ⊢ F hn-succ m F p = hn-succ-i m (λ x → x) F p mutual hn-ante-i : {n : ℕ} {Γ-t : Ctx n} {Γ : FSC-Ctx n Γ-t} {β : Type n} (m : ℕ) (S : Form Γ-t β → Form Γ-t $o) (F : Form Γ-t β) (G : Form Γ-t $o) → Γ , S (headNorm m F) ⊢ G → Γ , S F ⊢ G hn-ante-i m S (app F H) G p = hn-ante-i m (λ x → S (app x H)) F G (hn-ante-i' m S (headNorm m F) H G p) hn-ante-i _ _ (var _ _) _ p = p hn-ante-i _ _ N _ p = p hn-ante-i _ _ A _ p = p hn-ante-i _ _ Π _ p = p hn-ante-i _ _ i _ p = p hn-ante-i _ _ (lam _ _) _ p = p hn-ante-i' : {n : ℕ} {Γ-t : Ctx n} {Γ : FSC-Ctx n Γ-t} {β γ : Type n} (m : ℕ) (S : Form Γ-t β → Form Γ-t $o) (F : Form Γ-t (γ > β)) (H : Form Γ-t γ) (G : Form Γ-t $o) → Γ , S (headNorm' m F H) ⊢ G → Γ , S (app F H) ⊢ G hn-ante-i' (suc m) S (lam _ F) H G p with hn-ante-i m S (sub H F) G p hn-ante-i' (suc _) S (lam _ _) _ _ _ | p' = reduce {_} {_} {_} {_} {_} {S} p' hn-ante-i' 0 _ (lam _ _) _ _ p = p hn-ante-i' zero _ (var _ _) _ _ p = p hn-ante-i' (suc _) _ (var _ _) _ _ p = p hn-ante-i' zero _ N _ _ p = p hn-ante-i' (suc _) _ N _ _ p = p hn-ante-i' zero _ A _ _ p = p hn-ante-i' (suc _) _ A _ _ p = p hn-ante-i' zero _ Π _ _ p = p hn-ante-i' (suc _) _ Π _ _ p = p hn-ante-i' zero _ i _ _ p = p hn-ante-i' (suc _) _ i _ _ p = p hn-ante-i' zero _ (app _ _) _ _ p = p hn-ante-i' (suc _) _ (app _ _) _ _ p = p hn-ante : {n : ℕ} {Γ-t : Ctx n} {Γ : FSC-Ctx n Γ-t} (m : ℕ) (F : Form Γ-t $o) (G : Form Γ-t $o) → Γ , headNorm m F ⊢ G → Γ , F ⊢ G hn-ante m F G p = hn-ante-i m (λ x → x) F G p mutual hn-ante-eq-i : {n : ℕ} {Γ-t : Ctx n} {Γ : FSC-Ctx n Γ-t} {α β : Type n} (m : ℕ) (S : Form Γ-t β → Form Γ-t $o) (F : Form Γ-t β) (G H : Form Γ-t α) → Γ , S (headNorm m F) ⊢ G == H → Γ , S F ⊢ G == H hn-ante-eq-i m S (app F I) G H p = hn-ante-eq-i m (λ x → S (app x I)) F G H (hn-ante-eq-i' m S (headNorm m F) I G H p) hn-ante-eq-i _ _ (var _ _) _ _ p = p hn-ante-eq-i _ _ N _ _ p = p hn-ante-eq-i _ _ A _ _ p = p hn-ante-eq-i _ _ Π _ _ p = p hn-ante-eq-i _ _ i _ _ p = p hn-ante-eq-i _ _ (lam _ _) _ _ p = p hn-ante-eq-i' : {n : ℕ} {Γ-t : Ctx n} {Γ : FSC-Ctx n Γ-t} {α β γ : Type n} (m : ℕ) (S : Form Γ-t β → Form Γ-t $o) (F : Form Γ-t (γ > β)) (I : Form Γ-t γ) (G H : Form Γ-t α) → Γ , S (headNorm' m F I) ⊢ G == H → Γ , S (app F I) ⊢ G == H hn-ante-eq-i' (suc m) S (lam _ F) I G H p with hn-ante-eq-i m S (sub I F) G H p hn-ante-eq-i' (suc _) S (lam _ _) _ _ _ _ | p' = reduce {_} {_} {_} {_} {_} {_} {S} p' hn-ante-eq-i' 0 _ (lam _ _) _ _ _ p = p hn-ante-eq-i' zero _ (var _ _) _ _ _ p = p hn-ante-eq-i' (suc _) _ (var _ _) _ _ _ p = p hn-ante-eq-i' zero _ N _ _ _ p = p hn-ante-eq-i' (suc _) _ N _ _ _ p = p hn-ante-eq-i' zero _ A _ _ _ p = p hn-ante-eq-i' (suc _) _ A _ _ _ p = p hn-ante-eq-i' zero _ Π _ _ _ p = p hn-ante-eq-i' (suc _) _ Π _ _ _ p = p hn-ante-eq-i' zero _ i _ _ _ p = p hn-ante-eq-i' (suc _) _ i _ _ _ p = p hn-ante-eq-i' zero _ (app _ _) _ _ _ p = p hn-ante-eq-i' (suc _) _ (app _ _) _ _ _ p = p hn-ante-eq : {n : ℕ} {Γ-t : Ctx n} {Γ : FSC-Ctx n Γ-t} {α : Type n} (m : ℕ) (F : Form Γ-t $o) (G H : Form Γ-t α) → Γ , headNorm m F ⊢ G == H → Γ , F ⊢ G == H hn-ante-eq m F G H p = hn-ante-eq-i m (λ x → x) F G H p -- ------------------------------------ head-& : {n : ℕ} {Γ-t : Ctx n} {Γ : FSC-Ctx n Γ-t} {F₁ F₂ G₁ G₂ : Form Γ-t $o} → Γ ⊢ $o ∋ F₁ == F₂ → Γ ⊢ $o ∋ G₁ == G₂ → Γ ⊢ $o ∋ (F₁ & G₁) ↔ (F₂ & G₂) head-& p₁ p₂ = head-app _ _ _ _ _ _ (simp (head-const _ N)) (simp (head-app _ _ _ _ _ _ (simp (head-app _ _ _ _ _ _ (simp (head-const _ A)) (simp (head-app _ _ _ _ _ _ (simp (head-const _ N)) p₁)))) (simp (head-app _ _ _ _ _ _ (simp (head-const _ N)) p₂)))) head-|| : {n : ℕ} {Γ-t : Ctx n} {Γ : FSC-Ctx n Γ-t} {F₁ F₂ G₁ G₂ : Form Γ-t $o} → Γ ⊢ $o ∋ F₁ == F₂ → Γ ⊢ $o ∋ G₁ == G₂ → Γ ⊢ $o ∋ (F₁ || G₁) ↔ (F₂ || G₂) head-|| p₁ p₂ = head-app _ _ _ _ _ _ (simp (head-app _ _ _ _ _ _ (simp (head-const _ A)) p₁)) p₂ head-=> : {n : ℕ} {Γ-t : Ctx n} {Γ : FSC-Ctx n Γ-t} {F₁ F₂ G₁ G₂ : Form Γ-t $o} → Γ ⊢ $o ∋ F₁ == F₂ → Γ ⊢ $o ∋ G₁ == G₂ → Γ ⊢ $o ∋ (F₁ => G₁) ↔ (F₂ => G₂) head-=> p₁ p₂ = head-app _ _ _ _ _ _ (simp (head-app _ _ _ _ _ _ (simp (head-const _ A)) (simp (head-app _ _ _ _ _ _ (simp (head-const _ N)) p₁)))) p₂ head-~ : {n : ℕ} {Γ-t : Ctx n} {Γ : FSC-Ctx n Γ-t} {F₁ F₂ : Form Γ-t $o} → Γ ⊢ $o ∋ F₁ == F₂ → Γ ⊢ $o ∋ (~ F₁) ↔ (~ F₂) head-~ p = head-app _ _ _ _ _ _ (simp (head-const _ N)) p head-== : {n : ℕ} {Γ-t : Ctx n} {Γ : FSC-Ctx n Γ-t} {α : Type n} {F₁ F₂ G₁ G₂ : Form Γ-t α} → Γ ⊢ α ∋ F₁ == F₂ → Γ ⊢ α ∋ G₁ == G₂ → Γ ⊢ $o ∋ (F₁ == G₁) ↔ (F₂ == G₂) head-== p₁ p₂ = head-app _ _ _ _ _ _ (simp (head-app _ _ _ _ _ _ (simp (head-const _ _)) p₁)) p₂
{-# OPTIONS --without-K #-} open import HoTT open import cohomology.Exactness open import cohomology.Choice module cohomology.Theory where record CohomologyTheory i : Type (lsucc i) where field C : ℤ → Ptd i → Group i CEl : ℤ → Ptd i → Type i CEl n X = Group.El (C n X) Cid : (n : ℤ) (X : Ptd i) → CEl n X Cid n X = GroupStructure.ident (Group.group-struct (C n X)) ⊙CEl : ℤ → Ptd i → Ptd i ⊙CEl n X = ⊙[ CEl n X , Cid n X ] field CF-hom : (n : ℤ) {X Y : Ptd i} → fst (X ⊙→ Y) → (C n Y →ᴳ C n X) CF-ident : (n : ℤ) {X : Ptd i} → CF-hom n {X} {X} (⊙idf X) == idhom (C n X) CF-comp : (n : ℤ) {X Y Z : Ptd i} (g : fst (Y ⊙→ Z)) (f : fst (X ⊙→ Y)) → CF-hom n (g ⊙∘ f) == CF-hom n f ∘ᴳ CF-hom n g CF : (n : ℤ) {X Y : Ptd i} → fst (X ⊙→ Y) → fst (⊙CEl n Y ⊙→ ⊙CEl n X) CF n f = GroupHom.⊙f (CF-hom n f) field C-abelian : (n : ℤ) (X : Ptd i) → is-abelian (C n X) C-Susp : (n : ℤ) (X : Ptd i) → C (succ n) (⊙Susp X) == C n X C-exact : (n : ℤ) {X Y : Ptd i} (f : fst (X ⊙→ Y)) → is-exact (CF n (⊙cfcod f)) (CF n f) C-additive : (n : ℤ) {I : Type i} (Z : I → Ptd i) → ((W : I → Type i) → has-choice ⟨0⟩ I W) → C n (⊙BigWedge Z) == Πᴳ I (C n ∘ Z) {- A quick useful special case of C-additive: C n (X ∨ Y) == C n X × C n Y -} C-binary-additive : (n : ℤ) (X Y : Ptd i) → C n (X ⊙∨ Y) == C n X ×ᴳ C n Y C-binary-additive n X Y = ap (C n) (! (BigWedge-Bool-⊙path Pick)) ∙ C-additive n _ (λ _ → Bool-has-choice) ∙ Πᴳ-Bool-is-×ᴳ (C n ∘ Pick) where Pick : Lift {j = i} Bool → Ptd i Pick (lift true) = X Pick (lift false) = Y record OrdinaryTheory i : Type (lsucc i) where constructor ordinary-theory field cohomology-theory : CohomologyTheory i open CohomologyTheory cohomology-theory public field C-dimension : (n : ℤ) → n ≠ O → C n (⊙Sphere O) == 0ᴳ
{-# OPTIONS --cubical --safe #-} module Relation.Nullary.Discrete.FromBoolean where open import Prelude open import Relation.Nullary.Discrete module _ {a} {A : Type a} (_≡ᴮ_ : A → A → Bool) (sound : ∀ x y → T (x ≡ᴮ y) → x ≡ y) (complete : ∀ x → T (x ≡ᴮ x)) where from-bool-eq : Discrete A from-bool-eq x y = iff-dec (sound x y iff flip (subst (λ z → T (x ≡ᴮ z))) (complete x)) (T? (x ≡ᴮ y))
module calculus-examples where open import Data.List using (List ; _∷_ ; [] ; _++_) open import Data.List.Any using (here ; there ; any) open import Data.List.Any.Properties open import Data.OrderedListMap open import Data.Sum using (inj₁ ; inj₂ ; _⊎_) open import Data.Maybe.Base open import Data.Empty using (⊥ ; ⊥-elim) open import Data.Bool.Base using (true ; false) open import Relation.Nullary using (Dec ; yes ; no ; ¬_) open import Agda.Builtin.Equality using (refl ; _≡_) open import Relation.Nullary.Decidable using (⌊_⌋) open import Relation.Binary.PropositionalEquality using (subst ; cong ; sym ; trans) open import calculus open import utility open import Esterel.Environment as Env open import Esterel.Variable.Signal as Signal using (Signal ; _ₛ ; unknown ; present ; absent ; _≟ₛₜ_) open import Esterel.Variable.Shared as SharedVar using (SharedVar) open import Esterel.Variable.Sequential as SeqVar using (SeqVar) open import Esterel.Lang open import Esterel.Lang.CanFunction open import Esterel.Lang.CanFunction.Properties open import Esterel.Lang.CanFunction.SetSigMonotonic using (canₛ-set-sig-monotonic) open import Esterel.Lang.Properties open import Esterel.Lang.Binding open import Esterel.Context open import Esterel.CompletionCode as Code using () renaming (CompletionCode to Code) open import context-properties open import Esterel.Lang.CanFunction.Base using (canₛ-⊆-FV) open import Data.Nat as Nat using (ℕ ; zero ; suc ; _+_) renaming (_⊔_ to _⊔ℕ_) open import Data.Nat.Properties.Simple using (+-comm) open import Data.Product using (Σ-syntax ; Σ ; _,_ ; _,′_ ; proj₁ ; proj₂ ; _×_) open import eval {- This example is not true (and not provable under the current calculus) {- rewriting a present to the true branch -} {- cannot prove without the `signal` form -} ex1 : ∀ S p q -> CB p -> signl S (emit S >> (present S ∣⇒ p ∣⇒ q)) ≡ₑ signl S (emit S >> p) # [] ex1 S p q CBp = calc where θS→unk : Env θS→unk = Θ SigMap.[ S ↦ Signal.unknown ] [] [] S∈θS→unk : SigMap.∈Dom S (sig θS→unk) S∈θS→unk = sig-∈-single S Signal.unknown θS→unk[S]≡unk : sig-stats{S = S} θS→unk S∈θS→unk ≡ Signal.unknown θS→unk[S]≡unk = sig-stats-1map' S Signal.unknown S∈θS→unk θS→pre : Env θS→pre = set-sig{S} θS→unk S∈θS→unk Signal.present S∈θS→pre : SigMap.∈Dom S (sig θS→pre) S∈θS→pre = sig-set-mono' {S} {S} {θS→unk} {Signal.present} {S∈θS→unk} S∈θS→unk θS→pre[S]≡pre : sig-stats{S = S} θS→pre S∈θS→pre ≡ Signal.present θS→pre[S]≡pre = sig-putget{S} {θS→unk} {Signal.present} S∈θS→unk S∈θS→pre θS→unk[S]≠absent : ¬ sig-stats{S = S} θS→unk S∈θS→unk ≡ Signal.absent θS→unk[S]≠absent is rewrite θS→unk[S]≡unk = unknotabs is where unknotabs : Signal.unknown ≡ Signal.absent → ⊥ unknotabs () CBsignalS[emitS>>p] : CB (signl S (emit S >> p)) CBsignalS[emitS>>p] = CBsig (CBseq (CBemit{S}) CBp ((λ z → λ ()) , (λ z → λ ()) , (λ z → λ ()))) calc : signl S (emit S >> (present S ∣⇒ p ∣⇒ q)) ≡ₑ signl S (emit S >> p) # [] calc = ≡ₑtran {r = (ρ θS→unk · (emit S >> (present S ∣⇒ p ∣⇒ q)))} (≡ₑstep [raise-signal]) (≡ₑtran {r = (ρ θS→pre · (nothin >> (present S ∣⇒ p ∣⇒ q)))} (≡ₑstep ([emit] S∈θS→unk θS→unk[S]≠absent (deseq dehole))) (≡ₑtran {r = (ρ θS→pre · (present S ∣⇒ p ∣⇒ q))} (≡ₑctxt (dcenv dchole) (dcenv dchole) (≡ₑstep [seq-done])) (≡ₑtran {r = (ρ θS→pre · p)} (≡ₑstep ([is-present] S S∈θS→pre θS→pre[S]≡pre dehole)) (≡ₑsymm CBsignalS[emitS>>p] (≡ₑtran {r = (ρ θS→unk · (emit S >> p))} (≡ₑstep [raise-signal]) (≡ₑtran {r = (ρ θS→pre · (nothin >> p))} (≡ₑstep ([emit] S∈θS→unk θS→unk[S]≠absent (deseq dehole))) (≡ₑtran {r = ρ θS→pre · p} (≡ₑctxt (dcenv dchole) (dcenv dchole) (≡ₑstep [seq-done])) ≡ₑrefl))))))) -} Canₛpresent-fact : ∀ S p q -> (Signal.unwrap S) ∈ Canₛ (present S ∣⇒ p ∣⇒ q) (Θ SigMap.[ S ↦ Signal.unknown ] [] []) -> (Signal.unwrap S ∈ Canₛ p (Θ SigMap.[ S ↦ Signal.unknown ] [] [])) ⊎ (Signal.unwrap S ∈ Canₛ q (Θ SigMap.[ S ↦ Signal.unknown ] [] [])) Canₛpresent-fact S p q S∈Canₛ[presentSpq] with Env.Sig∈ S (Θ SigMap.[ S ↦ Signal.unknown ] [] []) Canₛpresent-fact S p q S∈Canₛ[presentSpq] | yes S∈ with ⌊ present ≟ₛₜ (Env.sig-stats{S} (Θ SigMap.[ S ↦ Signal.unknown ] [] []) S∈) ⌋ Canₛpresent-fact S p q S∈Canₛ[presentSpq] | yes S∈ | true = inj₁ S∈Canₛ[presentSpq] Canₛpresent-fact S p q S∈Canₛ[presentSpq] | yes S∈ | false with ⌊ absent ≟ₛₜ Env.sig-stats{S} (Θ SigMap.[ S ↦ Signal.unknown ] [] []) S∈ ⌋ Canₛpresent-fact S p q S∈Canₛ[presentSpq] | yes S∈ | false | true = inj₂ S∈Canₛ[presentSpq] Canₛpresent-fact S p q S∈Canₛ[presentSpq] | yes S∈ | false | false = ++⁻ (Canₛ p (Θ SigMap.[ S ↦ Signal.unknown ] [] [])) S∈Canₛ[presentSpq] Canₛpresent-fact S p q _ | no ¬p = ⊥-elim (¬p (SigMap.update-in-keys [] S unknown)) {- rewriting a present to the false branch -} ex2b : ∀ S p q C -> CB (C ⟦ signl S q ⟧c) -> Signal.unwrap S ∉ (Canₛ p (Θ SigMap.[ S ↦ unknown ] [] [])) -> Signal.unwrap S ∉ (Canₛ q (Θ SigMap.[ S ↦ unknown ] [] [])) -> signl S (present S ∣⇒ p ∣⇒ q) ≡ₑ signl S q # C ex2b S p q C CBq s∉Canₛp s∉Canₛq = calc where θS→unk : Env θS→unk = Θ SigMap.[ S ↦ Signal.unknown ] [] [] S∈θS→unk : SigMap.∈Dom S (sig θS→unk) S∈θS→unk = sig-∈-single S Signal.unknown θS→unk[S]≡unk : sig-stats{S = S} θS→unk S∈θS→unk ≡ Signal.unknown θS→unk[S]≡unk = sig-stats-1map' S Signal.unknown S∈θS→unk θS→abs : Env θS→abs = set-sig{S} θS→unk S∈θS→unk Signal.absent S∈θS→abs : SigMap.∈Dom S (sig θS→abs) S∈θS→abs = sig-set-mono' {S} {S} {θS→unk} {Signal.absent} {S∈θS→unk} S∈θS→unk θS→abs[S]≡abs : sig-stats{S = S} θS→abs S∈θS→abs ≡ Signal.absent θS→abs[S]≡abs = sig-putget{S} {θS→unk} {Signal.absent} S∈θS→unk S∈θS→abs S∉Canθₛq : Signal.unwrap S ∉ Canθₛ SigMap.[ S ↦ unknown ] 0 q []env S∉Canθₛq S∈Canθₛq = s∉Canₛq (Canθₛunknown->Canₛunknown S q S∈Canθₛq) S∉CanθₛpresentSpq : Signal.unwrap S ∉ Canθₛ SigMap.[ S ↦ unknown ] 0 (present S ∣⇒ p ∣⇒ q) []env S∉CanθₛpresentSpq S∈Canθₛ with Canθₛunknown->Canₛunknown S (present S ∣⇒ p ∣⇒ q) S∈Canθₛ ... | fact with Canₛpresent-fact S p q fact ... | inj₁ s∈Canₛp = s∉Canₛp s∈Canₛp ... | inj₂ s∈Canₛq = s∉Canₛq s∈Canₛq bwd : signl S q ≡ₑ (ρ⟨ θS→abs , WAIT ⟩· q) # C bwd = ≡ₑtran (≡ₑstep [raise-signal]) (≡ₑtran (≡ₑstep ([absence] S S∈θS→unk θS→unk[S]≡unk S∉Canθₛq)) ≡ₑrefl) fwd : signl S (present S ∣⇒ p ∣⇒ q) ≡ₑ (ρ⟨ θS→abs , WAIT ⟩· q) # C fwd = ≡ₑtran (≡ₑstep [raise-signal]) (≡ₑtran (≡ₑstep ([absence] S S∈θS→unk θS→unk[S]≡unk S∉CanθₛpresentSpq)) (≡ₑtran (≡ₑstep ([is-absent] S S∈θS→abs θS→abs[S]≡abs dehole)) ≡ₑrefl)) where calc : signl S (present S ∣⇒ p ∣⇒ q) ≡ₑ signl S q # C calc = ≡ₑtran fwd (≡ₑsymm CBq bwd) ex2 : ∀ S p q C -> CB (C ⟦ signl S q ⟧c) -> (∀ status -> Signal.unwrap S ∉ (Canₛ p (Θ SigMap.[ S ↦ status ] [] []))) -> (∀ status -> Signal.unwrap S ∉ (Canₛ q (Θ SigMap.[ S ↦ status ] [] []))) -> signl S (present S ∣⇒ p ∣⇒ q) ≡ₑ signl S q # C ex2 S p q C CB noSp noSq = ex2b S p q C CB (noSp unknown) (noSq unknown) {- Although true, the this example is not provable under the current calculus {- lifting an emit out of a par -} ex3 : ∀ S p q -> CB (p ∥ q) -> signl S ((emit S >> p) ∥ q) ≡ₑ signl S (emit S >> (p ∥ q)) # [] ex3 S p q CBp∥q = calc where θS→unk : Env θS→unk = Θ SigMap.[ S ↦ Signal.unknown ] [] [] S∈θS→unk : SigMap.∈Dom S (sig θS→unk) S∈θS→unk = sig-∈-single S Signal.unknown θS→unk[S]≡unk : sig-stats{S = S} θS→unk S∈θS→unk ≡ Signal.unknown θS→unk[S]≡unk = sig-stats-1map' S Signal.unknown S∈θS→unk θS→pre : Env θS→pre = set-sig{S} θS→unk S∈θS→unk Signal.present θS→unk[S]≠absent : ¬ sig-stats{S = S} θS→unk S∈θS→unk ≡ Signal.absent θS→unk[S]≠absent is rewrite θS→unk[S]≡unk = unknotabs is where unknotabs : Signal.unknown ≡ Signal.absent → ⊥ unknotabs () calc : signl S ((emit S >> p) ∥ q) ≡ₑ signl S (emit S >> (p ∥ q)) # [] calc = ≡ₑtran {r = ρ⟨ θS→unk · ((emit S >> p) ∥ q)} (≡ₑstep [raise-signal]) (≡ₑtran {r = ρ θS→pre · (nothin >> p ∥ q)} (≡ₑstep ([emit]{S = S} S∈θS→unk θS→unk[S]≠absent (depar₁ (deseq dehole)))) (≡ₑtran {r = ρ θS→pre · (p ∥ q)} (≡ₑctxt (dcenv (dcpar₁ dchole)) (dcenv (dcpar₁ dchole)) (≡ₑstep [seq-done])) (≡ₑsymm (CBsig (CBseq CBemit CBp∥q (((λ z → λ ()) , (λ z → λ ()) , (λ z → λ ()))))) (≡ₑtran {r = ρ θS→unk · (emit S >> (p ∥ q))} (≡ₑstep [raise-signal]) (≡ₑtran (≡ₑstep ([emit] S∈θS→unk θS→unk[S]≠absent (deseq dehole))) (≡ₑctxt (dcenv dchole) (dcenv dchole) (≡ₑstep [seq-done]))))))) -} {- pushing a trap across a par -} ex4 : ∀ n p q -> CB p -> done q -> p ≡ₑ q # [] -> (trap (exit (suc n) ∥ p)) ≡ₑ (exit n ∥ trap p) # [] ex4 = ex4-split where basealwaysdistinct : ∀ x -> distinct base x basealwaysdistinct x = (λ { z () x₂ }) , (λ { z () x₂ }) , (λ { z () x₂}) CBplugrpartrap : ∀ n -> ∀ {r r′ BVp FVp} -> CorrectBinding r BVp FVp → r′ ≐ ceval (epar₂ (exit n)) ∷ ceval etrap ∷ [] ⟦ r ⟧c → CB r′ CBplugrpartrap n {p} {p′} {BVp} {FVp} CBp r′dc with BVFVcorrect p BVp FVp CBp | unplugc r′dc ... | refl , refl | refl = CBpar CBexit (CBtrap CBp) (basealwaysdistinct BVp) (basealwaysdistinct (BVars p)) (basealwaysdistinct (FVars p)) (λ { _ () _ }) CBplugtraprpar : ∀ n -> {r r′ : Term} {BVp FVp : Σ (List ℕ) (λ x → List ℕ × List ℕ)} → CorrectBinding r BVp FVp → r′ ≐ ceval etrap ∷ ceval (epar₂ (exit (suc n))) ∷ [] ⟦ r ⟧c → CB r′ CBplugtraprpar n {r} {r′} {BVp} {FVp} CBr r′C with unplugc r′C ... | refl with BVFVcorrect r BVp FVp CBr ... | refl , refl = CBtrap (CBpar CBexit CBr (basealwaysdistinct BVp) (basealwaysdistinct (BVars r)) (basealwaysdistinct (FVars r)) (λ { _ () _})) ex4-split : ∀ n p q -> CB p -> done q -> p ≡ₑ q # [] -> (trap (exit (suc n) ∥ p)) ≡ₑ (exit n ∥ trap p) # [] ex4-split n p .nothin CBp (dhalted hnothin) p≡ₑnothin = ≡ₑtran {r = trap (exit (suc n) ∥ nothin)} (≡ₑctxt (dctrap (dcpar₂ dchole)) (dctrap (dcpar₂ dchole)) (≡ₑ-context [] _ (CBplugtraprpar n) p≡ₑnothin)) (≡ₑtran {r = trap (exit (suc n))} (≡ₑctxt (dctrap dchole) (dctrap dchole) (≡ₑtran (≡ₑstep [par-swap]) (≡ₑstep ([par-nothing] (dhalted (hexit (suc n))))))) (≡ₑtran {r = exit n} (≡ₑstep ([trap-done] (hexit (suc n)))) (≡ₑsymm (CBpar CBexit (CBtrap CBp) (basealwaysdistinct (BVars p)) (basealwaysdistinct (BVars p)) (basealwaysdistinct (FVars p)) (λ { _ () _ })) (≡ₑtran {r = exit n ∥ trap nothin} (≡ₑctxt (dcpar₂ (dctrap dchole)) (dcpar₂ (dctrap dchole)) (≡ₑ-context [] _ (CBplugrpartrap n) p≡ₑnothin)) (≡ₑtran {r = exit n ∥ nothin} (≡ₑctxt (dcpar₂ dchole) (dcpar₂ dchole) (≡ₑstep ([trap-done] hnothin))) (≡ₑtran {r = nothin ∥ exit n} (≡ₑstep [par-swap]) (≡ₑtran {r = exit n} (≡ₑstep ([par-nothing] (dhalted (hexit n)))) ≡ₑrefl))))))) ex4-split n p .(exit 0) CBp (dhalted (hexit 0)) p≡ₑexit0 = ≡ₑtran {r = trap (exit (suc n) ∥ exit 0) } (≡ₑctxt (dctrap (dcpar₂ dchole)) (dctrap (dcpar₂ dchole)) (≡ₑ-context [] _ (CBplugtraprpar n) p≡ₑexit0)) (≡ₑtran {r = trap (exit (suc n))} (≡ₑctxt (dctrap dchole) (dctrap dchole) (≡ₑstep ([par-2exit] (suc n) zero))) (≡ₑtran {r = exit n} (≡ₑstep ([trap-done] (hexit (suc n)))) (≡ₑsymm (CBpar CBexit (CBtrap CBp) (basealwaysdistinct (BVars p)) (basealwaysdistinct (BVars p)) (basealwaysdistinct (FVars p)) (λ { _ () _ })) (≡ₑtran {r = exit n ∥ trap (exit 0)} (≡ₑctxt (dcpar₂ (dctrap dchole)) (dcpar₂ (dctrap dchole)) (≡ₑ-context [] _ (CBplugrpartrap n) p≡ₑexit0)) (≡ₑtran {r = exit n ∥ nothin } (≡ₑctxt (dcpar₂ dchole) (dcpar₂ dchole) (≡ₑstep ([trap-done] (hexit zero)))) (≡ₑtran {r = nothin ∥ exit n} (≡ₑstep [par-swap]) (≡ₑtran {r = exit n} (≡ₑstep ([par-nothing] (dhalted (hexit n)))) ≡ₑrefl))))))) ex4-split n p .(exit (suc m)) CBp (dhalted (hexit (suc m))) p≡ₑexitm = ≡ₑtran {r = trap (exit (suc n) ∥ exit (suc m)) } (≡ₑctxt (dctrap (dcpar₂ dchole)) (dctrap (dcpar₂ dchole)) (≡ₑ-context [] _ (CBplugtraprpar n) p≡ₑexitm)) (≡ₑtran {r = trap (exit (suc n ⊔ℕ (suc m)))} (≡ₑctxt (dctrap dchole) (dctrap dchole) (≡ₑstep ([par-2exit] (suc n) (suc m)))) (≡ₑtran {r = ↓_ {p = (exit (suc n ⊔ℕ (suc m)))} (hexit (suc n ⊔ℕ (suc m))) } (≡ₑstep ([trap-done] (hexit (suc (n ⊔ℕ m))))) (≡ₑsymm (CBpar CBexit (CBtrap CBp) (basealwaysdistinct (BVars p)) (basealwaysdistinct (BVars p)) (basealwaysdistinct (FVars p)) (λ { _ () _ })) (≡ₑtran {r = exit n ∥ trap (exit (suc m))} (≡ₑctxt (dcpar₂ (dctrap dchole)) (dcpar₂ (dctrap dchole)) (≡ₑ-context [] _ (CBplugrpartrap n) p≡ₑexitm)) (≡ₑtran {r = exit n ∥ ↓_ {p = exit (suc m)} (hexit (suc m))} (≡ₑctxt (dcpar₂ dchole) (dcpar₂ dchole) (≡ₑstep ([trap-done] (hexit (suc m)))) ) (≡ₑtran {r = ↓_ {p = (exit (suc n ⊔ℕ (suc m)))} (hexit (suc n ⊔ℕ (suc m))) } (≡ₑstep ([par-2exit] n m)) ≡ₑrefl)))))) ex4-split n p q CBp (dpaused pausedq) p≡ₑq = ≡ₑtran {r = trap (exit (suc n) ∥ q)} (≡ₑctxt (dctrap (dcpar₂ dchole)) (dctrap (dcpar₂ dchole)) (≡ₑ-context [] _ (CBplugtraprpar n) p≡ₑq)) (≡ₑtran {r = trap (exit (suc n))} (≡ₑctxt (dctrap dchole) (dctrap dchole) (≡ₑstep ([par-1exit] (suc n) pausedq))) (≡ₑtran {r = exit n} (≡ₑstep ([trap-done] (hexit (suc n)))) (≡ₑsymm (CBpar CBexit (CBtrap CBp) (basealwaysdistinct (BVars p)) (basealwaysdistinct (BVars p)) (basealwaysdistinct (FVars p)) (λ { _ () _ })) (≡ₑtran {r = exit n ∥ trap q} (≡ₑctxt (dcpar₂ (dctrap dchole)) (dcpar₂ (dctrap dchole)) (≡ₑ-context [] _ (CBplugrpartrap n) p≡ₑq)) (≡ₑtran {r = exit n} (≡ₑstep ([par-1exit] n (ptrap pausedq))) ≡ₑrefl))))) {- lifting a signal out of an evaluation context -} ex5 : ∀ S p q r E -> CB r -> q ≐ E ⟦(signl S p)⟧e -> r ≐ E ⟦ p ⟧e -> (ρ⟨ []env , WAIT ⟩· q) ≡ₑ (ρ⟨ []env , WAIT ⟩· (signl S r)) # [] ex5 S p q r E CBr decomp1 decomp2 = calc where θS→unk : Env θS→unk = Θ SigMap.[ S ↦ Signal.unknown ] [] [] replugit : q ≐ Data.List.map ceval E ⟦ signl S p ⟧c -> E ⟦ ρ⟨ θS→unk , WAIT ⟩· p ⟧e ≐ Data.List.map ceval E ⟦ ρ⟨ θS→unk , WAIT ⟩· p ⟧c replugit x = ⟦⟧e-to-⟦⟧c Erefl calc : (ρ⟨ []env , WAIT ⟩· q) ≡ₑ (ρ⟨ []env , WAIT ⟩· (signl S r)) # [] calc = ≡ₑtran {r = ρ⟨ []env , WAIT ⟩· (E ⟦ (ρ⟨ θS→unk , WAIT ⟩· p) ⟧e)} (≡ₑctxt (dcenv (⟦⟧e-to-⟦⟧c decomp1)) (dcenv (replugit (⟦⟧e-to-⟦⟧c decomp1))) (≡ₑstep [raise-signal])) (≡ₑtran {r = ρ⟨ θS→unk , WAIT ⟩· (E ⟦ p ⟧e)} (≡ₑstep ([merge]{E = E} Erefl)) (≡ₑsymm (CBρ (CBsig CBr)) (≡ₑtran {r = ρ⟨ []env , WAIT ⟩· (ρ⟨ θS→unk , WAIT ⟩· r)} (≡ₑctxt (dcenv dchole) (dcenv dchole) (≡ₑstep [raise-signal])) (≡ₑstep ([merge] {E = []} (subst (\ x -> ρ⟨ θS→unk , WAIT ⟩· x ≐ [] ⟦ ρ⟨ θS→unk , WAIT ⟩· E ⟦ p ⟧e ⟧e) (unplug decomp2) dehole)))))) {- two specific examples of lifting a signal out of an evaluation context -} ex6 : ∀ S p q -> CB (p ∥ q) -> (ρ⟨ []env , WAIT ⟩· ((signl S p) ∥ q)) ≡ₑ (ρ⟨ []env , WAIT ⟩· (signl S (p ∥ q))) # [] ex6 S p q CBp∥q = ex5 S p (signl S p ∥ q) (p ∥ q) ((epar₁ q) ∷ []) CBp∥q (depar₁ dehole) (depar₁ dehole) ex7 : ∀ S p q -> CB (p >> q) -> (ρ⟨ []env , WAIT ⟩· ((signl S p) >> q)) ≡ₑ (ρ⟨ []env , WAIT ⟩· (signl S (p >> q))) # [] ex7 S p q CBp>>q = ex5 S p (signl S p >> q) (p >> q) ((eseq q) ∷ []) CBp>>q (deseq dehole) (deseq dehole) {- pushing a seq into a binding form (a signal in this case). this shows the need for the outer environment ρ [} · _ in order to manipulate the environment. -} ex8-worker : ∀ {BV FV} S p q -> CorrectBinding ((signl S p) >> q) BV FV -> (ρ⟨ []env , WAIT ⟩· (signl S p) >> q) ≡ₑ (ρ⟨ []env , WAIT ⟩· signl S (p >> q)) # [] ex8-worker S p q (CBseq {BVp = BVsigS·p} {FVq = FVq} (CBsig {BV = BVp} CBp) CBq BVsigS·p≠FVq) = ≡ₑtran {r = ρ⟨ []env , WAIT ⟩· (ρ⟨ [S]-env S , WAIT ⟩· p) >> q} {C = []} (≡ₑctxt {C = []} {C′ = cenv []env WAIT ∷ ceval (eseq q) ∷ []} Crefl Crefl (≡ₑstep ([raise-signal] {p} {S}))) (≡ₑtran {r = ρ⟨ [S]-env S , WAIT ⟩· p >> q} {C = []} (≡ₑstep ([merge] (deseq dehole))) (≡ₑsymm (CBρ (CBsig (CBseq CBp CBq (⊆-respect-distinct-left (∪ʳ (+S S base) ⊆-refl) BVsigS·p≠FVq)))) (≡ₑtran {r = ρ⟨ []env , WAIT ⟩· (ρ⟨ [S]-env S , WAIT ⟩· p >> q)} {C = []} (≡ₑctxt {C = []} {C′ = cenv []env WAIT ∷ []} Crefl Crefl (≡ₑstep ([raise-signal] {p >> q} {S}))) (≡ₑstep ([merge] dehole))))) ex8 : ∀ S p q -> CB ((signl S p) >> q) -> (ρ⟨ []env , WAIT ⟩· (signl S p) >> q) ≡ₑ (ρ⟨ []env , WAIT ⟩· signl S (p >> q)) # [] ex8 S p q cb = ex8-worker S p q cb {- rearranging signal forms -} ex9 : ∀ S1 S2 p -> CB p -> signl S1 (signl S2 p) ≡ₑ signl S2 (signl S1 p) # [] ex9 S1 S2 p CBp = ≡ₑtran {r = ρ⟨ (Θ SigMap.[ S1 ↦ Signal.unknown ] [] []) , WAIT ⟩· (signl S2 p)} (≡ₑstep [raise-signal]) (≡ₑtran {r = (ρ⟨ Θ SigMap.[ S1 ↦ Signal.unknown ] [] [] , WAIT ⟩· (ρ⟨ Θ SigMap.[ S2 ↦ Signal.unknown ] [] [] , WAIT ⟩· p))} (≡ₑctxt (dcenv dchole) (dcenv dchole) (≡ₑstep [raise-signal])) (≡ₑtran {r = (ρ⟨ (Θ SigMap.[ S1 ↦ Signal.unknown ] [] []) ← (Θ SigMap.[ S2 ↦ Signal.unknown ] [] []) , A-max WAIT WAIT ⟩· p)} (≡ₑstep ([merge] dehole)) (≡ₑsymm (CBsig (CBsig CBp)) (≡ₑtran {r = ρ⟨ (Θ SigMap.[ S2 ↦ Signal.unknown ] [] []) , WAIT ⟩· (signl S1 p)} (≡ₑstep [raise-signal]) (≡ₑtran {r = (ρ⟨ Θ SigMap.[ S2 ↦ Signal.unknown ] [] [] , WAIT ⟩· (ρ⟨ Θ SigMap.[ S1 ↦ Signal.unknown ] [] [] , WAIT ⟩· p))} (≡ₑctxt (dcenv dchole) (dcenv dchole) (≡ₑstep [raise-signal])) (≡ₑtran {r = (ρ⟨ (Θ SigMap.[ S2 ↦ Signal.unknown ] [] []) ← (Θ SigMap.[ S1 ↦ Signal.unknown ] [] []) , A-max WAIT WAIT ⟩· p)} (≡ₑstep ([merge] dehole)) (map-order-irr S1 S2 WAIT p))))))) where distinct-Ss-env'' : ∀ S1 S2 S3 -> ¬ Signal.unwrap S1 ≡ Signal.unwrap S2 -> Data.List.Any.Any (_≡_ S3) (Signal.unwrap S1 ∷ []) -> Data.List.Any.Any (_≡_ S3) (Signal.unwrap S2 ∷ []) -> ⊥ distinct-Ss-env'' S1 S2 S3 S1≠S2 (here S3=S1) (here S3=S2) rewrite S3=S1 = S1≠S2 S3=S2 distinct-Ss-env'' S1 S2 S3 S1≠S2 (here px) (there ()) distinct-Ss-env'' S1 S2 S3 S1≠S2 (there ()) S3∈Domθ2 distinct-Ss-env' : ∀ S1 S2 S3 -> ¬ Signal.unwrap S1 ≡ Signal.unwrap S2 -> Data.List.Any.Any (_≡_ S3) (Signal.unwrap S1 ∷ []) -> S3 ∈ proj₁ (Dom (Θ SigMap.[ S2 ↦ Signal.unknown ] [] [])) -> ⊥ distinct-Ss-env' S1 S2 S3 S1≠S2 S3∈Domθ1 S3∈Domθ2 rewrite SigMap.keys-1map S2 Signal.unknown = distinct-Ss-env'' S1 S2 S3 S1≠S2 S3∈Domθ1 S3∈Domθ2 distinct-Ss-env : ∀ S1 S2 S3 -> ¬ Signal.unwrap S1 ≡ Signal.unwrap S2 -> S3 ∈ proj₁ (Dom (Θ SigMap.[ S1 ↦ Signal.unknown ] [] [])) -> S3 ∈ proj₁ (Dom (Θ SigMap.[ S2 ↦ Signal.unknown ] [] [])) -> ⊥ distinct-Ss-env S1 S2 S3 S1≠S2 S3∈Domθ1 S3∈Domθ2 rewrite SigMap.keys-1map S1 Signal.unknown = distinct-Ss-env' S1 S2 S3 S1≠S2 S3∈Domθ1 S3∈Domθ2 distinct-doms : ∀ S1 S2 -> ¬ (Signal.unwrap S1 ≡ Signal.unwrap S2) -> distinct (Env.Dom (Θ SigMap.[ S1 ↦ Signal.unknown ] [] [])) (Env.Dom (Θ SigMap.[ S2 ↦ Signal.unknown ] [] [])) distinct-doms S1 S2 S1≠S2 = (λ {S3 S3∈θ1 S3∈θ2 -> distinct-Ss-env S1 S2 S3 S1≠S2 S3∈θ1 S3∈θ2}) , (λ x₁ x₂ → λ ()) , (λ x₁ x₂ → λ ()) map-order-irr' : ∀ S1 S2 -> (Θ SigMap.[ S1 ↦ Signal.unknown ] [] []) ← (Θ SigMap.[ S2 ↦ Signal.unknown ] [] []) ≡ (Θ SigMap.[ S2 ↦ Signal.unknown ] [] []) ← (Θ SigMap.[ S1 ↦ Signal.unknown ] [] []) map-order-irr' S1 S2 with (Signal.unwrap S1) Nat.≟ (Signal.unwrap S2) map-order-irr' S1 S2 | yes S1=S2 rewrite S1=S2 = refl map-order-irr' S1 S2 | no ¬S1=S2 = Env.←-comm ((Θ SigMap.[ S1 ↦ Signal.unknown ] [] [])) ((Θ SigMap.[ S2 ↦ Signal.unknown ] [] [])) (distinct-doms S1 S2 ¬S1=S2) map-order-irr : ∀ S1 S2 A p -> (ρ⟨ Θ SigMap.[ S2 ↦ Signal.unknown ] [] [] ← Θ SigMap.[ S1 ↦ Signal.unknown ] [] [] , A ⟩· p) ≡ₑ (ρ⟨ Θ SigMap.[ S1 ↦ Signal.unknown ] [] [] ← Θ SigMap.[ S2 ↦ Signal.unknown ] [] [] , A ⟩· p) # [] map-order-irr S1 S2 A p rewrite map-order-irr' S1 S2 = ≡ₑrefl {- dropping a loop whose body is just `exit` -} ex10 : ∀ C n -> (loop (exit n)) ≡ₑ (exit n) # C ex10 C n = ≡ₑtran (≡ₑstep [loop-unroll]) (≡ₑstep [loopˢ-exit]) {- (nothin ∥ p) ≡ₑ p, but only if we know that p goes to something that's done -} ex11 : ∀ p q -> CB p -> done q -> p ≡ₑ q # [] -> (nothin ∥ p) ≡ₑ p # [] ex11 = calc where ex11-pq : ∀ q C -> done q -> (nothin ∥ q) ≡ₑ q # C ex11-pq .nothin C (dhalted hnothin) = ≡ₑtran (≡ₑstep [par-swap]) (≡ₑstep ([par-nothing] (dhalted hnothin))) ex11-pq .(exit n) C (dhalted (hexit n)) = ≡ₑstep ([par-nothing] (dhalted (hexit n))) ex11-pq q C (dpaused p/paused) = ≡ₑstep ([par-nothing] (dpaused p/paused)) basealwaysdistinct : ∀ x -> distinct base x basealwaysdistinct x = (λ { z () x₂ }) , (λ { z () x₂ }) , (λ { z () x₂}) CBp->CBnothingp : {r r′ : Term} {BVp FVp : Σ (List ℕ) (λ x → List ℕ × List ℕ)} → CorrectBinding r BVp FVp → r′ ≐ ceval (epar₂ nothin) ∷ [] ⟦ r ⟧c → CB r′ CBp->CBnothingp {r} CBr r′dc with sym (unplugc r′dc) | BVFVcorrect _ _ _ CBr ... | refl | refl , refl = CBpar CBnothing CBr (basealwaysdistinct (BVars r)) (basealwaysdistinct (BVars r)) (basealwaysdistinct (FVars r)) (λ { _ () _ }) calc : ∀ p q -> CB p -> done q -> p ≡ₑ q # [] -> (nothin ∥ p) ≡ₑ p # [] calc p q CBp doneq p≡ₑq = ≡ₑtran {r = (nothin ∥ q)} (≡ₑctxt (dcpar₂ dchole) (dcpar₂ dchole) (≡ₑ-context [] _ CBp->CBnothingp p≡ₑq)) (≡ₑtran {r = q} (ex11-pq q [] doneq) (≡ₑsymm CBp p≡ₑq)) {- although true, can no longer prove {- an emit (first) in sequence is the same as emit in parallel -} ex12 : ∀ S p q -> CB p -> done q -> p ≡ₑ q # [] -> (signl S ((emit S) ∥ p)) ≡ₑ (signl S ((emit S) >> p)) # [] ex12 S p q CBp doneq p≡ₑq = calc where θS→unk : Env θS→unk = Θ SigMap.[ S ↦ Signal.unknown ] [] [] S∈θS→unk : SigMap.∈Dom S (sig θS→unk) S∈θS→unk = sig-∈-single S Signal.unknown θS→unk[S]≡unk : sig-stats{S = S} θS→unk S∈θS→unk ≡ Signal.unknown θS→unk[S]≡unk = sig-stats-1map' S Signal.unknown S∈θS→unk θS→pre : Env θS→pre = set-sig{S} θS→unk S∈θS→unk Signal.present θS→unk[S]≠absent : ¬ sig-stats{S = S} θS→unk S∈θS→unk ≡ Signal.absent θS→unk[S]≠absent is rewrite θS→unk[S]≡unk = unknotabs is where unknotabs : Signal.unknown ≡ Signal.absent → ⊥ unknotabs () CBp->CBρθSp : {r r′ : Term} {BVp FVp : Σ (List ℕ) (λ x → List ℕ × List ℕ)} → CorrectBinding r BVp FVp → r′ ≐ cenv θS→pre ∷ [] ⟦ r ⟧c → CB r′ CBp->CBρθSp {r} CBr r′dc with sym (unplugc r′dc) | BVFVcorrect _ _ _ CBr ... | refl | refl , refl = CBρ CBr basealwaysdistinct : ∀ x -> distinct base x basealwaysdistinct x = (λ { z () x₂ }) , (λ { z () x₂ }) , (λ { z () x₂}) CBsiglSemitS>>p : CB (signl S (emit S >> p)) CBsiglSemitS>>p = CBsig (CBseq CBemit CBp (basealwaysdistinct (FVars p))) calc : (signl S ((emit S) ∥ p)) ≡ₑ (signl S ((emit S) >> p)) # [] calc = ≡ₑtran {r = ρ θS→unk · ((emit S) ∥ p)} (≡ₑstep [raise-signal]) (≡ₑtran {r = ρ θS→pre · (nothin ∥ p)} (≡ₑstep ([emit] S∈θS→unk θS→unk[S]≠absent (depar₁ dehole))) (≡ₑtran {r = ρ θS→pre · p} (≡ₑctxt (dcenv dchole) (dcenv dchole) (≡ₑ-context [] (cenv _ ∷ []) CBp->CBρθSp (ex11 p q CBp doneq p≡ₑq))) (≡ₑsymm CBsiglSemitS>>p (≡ₑtran {r = ρ θS→unk · (emit S >> p)} (≡ₑstep [raise-signal]) (≡ₑtran {r = ρ θS→pre · nothin >> p} (≡ₑstep ([emit] S∈θS→unk θS→unk[S]≠absent (deseq dehole))) (≡ₑctxt (dcenv dchole) (dcenv dchole) (≡ₑstep [seq-done]))))))) -}
interleaved mutual -- we don't do `data A : Set` data A where -- you don't have to actually define any constructor to trigger the error, the "where" is enough data B where b : B
module getline where -- https://github.com/alhassy/AgdaCheatSheet#interacting-with-the-real-world-compilation-haskell-and-io open import Data.Nat using (ℕ; suc) open import Data.Nat.Show using (show) open import Data.Char using (Char) open import Data.List as L using (map; sum; upTo) open import Function using (_$_; const; _∘_) open import Data.String as S using (String; _++_; fromList) open import Agda.Builtin.Unit using (⊤) open import Codata.Musical.Colist using (take) open import Codata.Musical.Costring using (Costring) open import Data.Vec.Bounded as B using (toList) open import Agda.Builtin.Coinduction using (♯_) open import IO as IO using (run ; putStrLn ; IO) import IO.Primitive as Primitive infixr 1 _>>=_ _>>_ _>>=_ : ∀ {ℓ} {α β : Set ℓ} → IO α → (α → IO β) → IO β this >>= f = ♯ this IO.>>= λ x → ♯ f x _>>_ : ∀{ℓ} {α β : Set ℓ} → IO α → IO β → IO β x >> y = x >>= const y postulate getLine∞ : Primitive.IO Costring {-# FOREIGN GHC toColist :: [a] -> MAlonzo.Code.Codata.Musical.Colist.AgdaColist a toColist [] = MAlonzo.Code.Codata.Musical.Colist.Nil toColist (x : xs) = MAlonzo.Code.Codata.Musical.Colist.Cons x (MAlonzo.RTE.Sharp (toColist xs)) #-} {- Haskell's prelude is implicitly available; this is for demonstration. -} {-# FOREIGN GHC import Prelude as Haskell #-} {-# COMPILE GHC getLine∞ = fmap toColist Haskell.getLine #-} -- (1) -- getLine : IO Costring -- getLine = IO.lift getLine∞ getLine : IO String getLine = IO.lift $ getLine∞ Primitive.>>= (Primitive.return ∘ S.fromList ∘ B.toList ∘ take 100) postulate readInt : L.List Char → ℕ {-# COMPILE GHC readInt = \x -> read x :: Integer #-} main : Primitive.IO ⊤ main = run do putStrLn "Hello, world! I'm a compiled Agda program!" IO.putStrLn "What is your name?:" name ← getLine IO.putStrLn "Please enter a number:" num ← getLine let tri = show $ sum $ upTo $ suc $ readInt $ S.toList num putStrLn $ "The triangle number of " ++ num ++ " is " ++ tri putStrLn ("Bye, " ++ name) -- IO.putStrLn∞ ("Bye, " ++ name) {- If using approach (1) above. -}
open import Level using () renaming (_⊔_ to _⊔ˡ_) open import Relation.Binary using (_⇒_; TotalOrder; Reflexive; Symmetric; Transitive; IsEquivalence; IsPreorder; Antisymmetric) module AKS.Extended {c ℓ₁ ℓ₂} (≤-totalOrder : TotalOrder c ℓ₁ ℓ₂) where open TotalOrder ≤-totalOrder using (_≈_; _≤_; total; isEquivalence) renaming (Carrier to C; refl to ≤-refl; reflexive to ≤-reflexive; trans to ≤-trans ) open IsEquivalence isEquivalence using () renaming (refl to ≈-refl; sym to ≈-sym; trans to ≈-trans) data Extended : Set c where -∞ : Extended ⟨_⟩ : C → Extended infixl 4 _≈ᵉ_ data _≈ᵉ_ : Extended → Extended → Set (c ⊔ˡ ℓ₁) where -∞≈ : -∞ ≈ᵉ -∞ ⟨_⟩ : ∀ {b t} → b ≈ t → ⟨ b ⟩ ≈ᵉ ⟨ t ⟩ ≈ᵉ-refl : Reflexive _≈ᵉ_ ≈ᵉ-refl { -∞} = -∞≈ ≈ᵉ-refl {⟨ _ ⟩} = ⟨ ≈-refl ⟩ ≈ᵉ-sym : Symmetric _≈ᵉ_ ≈ᵉ-sym -∞≈ = -∞≈ ≈ᵉ-sym ⟨ x≈y ⟩ = ⟨ ≈-sym x≈y ⟩ ≈ᵉ-trans : Transitive _≈ᵉ_ ≈ᵉ-trans -∞≈ -∞≈ = -∞≈ ≈ᵉ-trans ⟨ x≈y ⟩ ⟨ y≈z ⟩ = ⟨ ≈-trans x≈y y≈z ⟩ ≈ᵉ-isEquivalence : IsEquivalence _≈ᵉ_ ≈ᵉ-isEquivalence = record { refl = ≈ᵉ-refl ; sym = ≈ᵉ-sym ; trans = ≈ᵉ-trans } infixl 4 _≤ᵉ_ data _≤ᵉ_ : Extended → Extended → Set (c ⊔ˡ ℓ₂) where -∞≤_ : ∀ t → -∞ ≤ᵉ t ⟨_⟩ : ∀ {b t} → b ≤ t → ⟨ b ⟩ ≤ᵉ ⟨ t ⟩ ≤ᵉ-refl : Reflexive _≤ᵉ_ ≤ᵉ-refl { -∞} = -∞≤ -∞ ≤ᵉ-refl {⟨ _ ⟩} = ⟨ ≤-refl ⟩ ≤ᵉ-reflexive : _≈ᵉ_ ⇒ _≤ᵉ_ ≤ᵉ-reflexive -∞≈ = -∞≤ -∞ ≤ᵉ-reflexive ⟨ x≈y ⟩ = ⟨ ≤-reflexive x≈y ⟩ ≤ᵉ-trans : Transitive _≤ᵉ_ ≤ᵉ-trans {x} {y} {z} (-∞≤ _) (-∞≤ t) = -∞≤ t ≤ᵉ-trans {x} {y} {z} (-∞≤ _) ⟨ _ ⟩ = -∞≤ z ≤ᵉ-trans {x} {y} {z} ⟨ x≤y ⟩ ⟨ y≤z ⟩ = ⟨ (≤-trans x≤y y≤z) ⟩ ≤ᵉ-isPreorder : IsPreorder _≈ᵉ_ _≤ᵉ_ ≤ᵉ-isPreorder = record { isEquivalence = ≈ᵉ-isEquivalence ; reflexive = ≤ᵉ-reflexive ; trans = ≤ᵉ-trans } module ≤ᵉ-Reasoning where open import Relation.Binary.Reasoning.Base.Double ≤ᵉ-isPreorder public
{-# OPTIONS --without-K --rewriting #-} open import lib.Basics open import lib.NType2 open import lib.types.Empty open import lib.types.Group open import lib.types.Int open import lib.types.List open import lib.types.Nat open import lib.types.Pi open import lib.types.Sigma module lib.types.Word {i} where module _ (A : Type i) where PlusMinus : Type i PlusMinus = Coprod A A Word : Type i Word = List PlusMinus module _ {A : Type i} where flip : PlusMinus A → PlusMinus A flip (inl a) = inr a flip (inr a) = inl a flip-flip : ∀ x → flip (flip x) == x flip-flip (inl x) = idp flip-flip (inr x) = idp Word-flip : Word A → Word A Word-flip = map flip Word-flip-flip : ∀ w → Word-flip (Word-flip w) == w Word-flip-flip nil = idp Word-flip-flip (x :: l) = ap2 _::_ (flip-flip x) (Word-flip-flip l) Word-exp : A → ℤ → Word A Word-exp a (pos 0) = nil Word-exp a (pos (S n)) = inl a :: Word-exp a (pos n) Word-exp a (negsucc 0) = inr a :: nil Word-exp a (negsucc (S n)) = inr a :: Word-exp a (negsucc n) module _ {A : Type i} {j} (G : Group j) where private module G = Group G PlusMinus-extendᴳ : (A → G.El) → (PlusMinus A → G.El) PlusMinus-extendᴳ f (inl a) = f a PlusMinus-extendᴳ f (inr a) = G.inv (f a) Word-extendᴳ : (A → G.El) → (Word A → G.El) Word-extendᴳ f = foldr G.comp G.ident ∘ map (PlusMinus-extendᴳ f) abstract Word-extendᴳ-++ : ∀ f l₁ l₂ → Word-extendᴳ f (l₁ ++ l₂) == G.comp (Word-extendᴳ f l₁) (Word-extendᴳ f l₂) Word-extendᴳ-++ f nil l₂ = ! $ G.unit-l _ Word-extendᴳ-++ f (x :: l₁) l₂ = ap (G.comp (PlusMinus-extendᴳ f x)) (Word-extendᴳ-++ f l₁ l₂) ∙ ! (G.assoc (PlusMinus-extendᴳ f x) (Word-extendᴳ f l₁) (Word-extendᴳ f l₂)) module _ {A : Type i} {j} (G : AbGroup j) where private module G = AbGroup G abstract PlusMinus-extendᴳ-comp : ∀ (f g : A → G.El) x → PlusMinus-extendᴳ G.grp (λ a → G.comp (f a) (g a)) x == G.comp (PlusMinus-extendᴳ G.grp f x) (PlusMinus-extendᴳ G.grp g x) PlusMinus-extendᴳ-comp f g (inl a) = idp PlusMinus-extendᴳ-comp f g (inr a) = G.inv-comp (f a) (g a) ∙ G.comm (G.inv (g a)) (G.inv (f a)) Word-extendᴳ-comp : ∀ (f g : A → G.El) l → Word-extendᴳ G.grp (λ a → G.comp (f a) (g a)) l == G.comp (Word-extendᴳ G.grp f l) (Word-extendᴳ G.grp g l) Word-extendᴳ-comp f g nil = ! (G.unit-l G.ident) Word-extendᴳ-comp f g (x :: l) = ap2 G.comp (PlusMinus-extendᴳ-comp f g x) (Word-extendᴳ-comp f g l) ∙ G.interchange (PlusMinus-extendᴳ G.grp f x) (PlusMinus-extendᴳ G.grp g x) (Word-extendᴳ G.grp f l) (Word-extendᴳ G.grp g l)
open import Agda.Builtin.List open import Agda.Builtin.Nat open import Agda.Builtin.Reflection open import Agda.Builtin.Unit open import Common.Product {-# TERMINATING #-} Loop : Set Loop = Loop postulate loop : Loop data Box (A : Set) : Set where box : A → Box A {-# TERMINATING #-} Boxed-loop : Set Boxed-loop = Box Boxed-loop postulate boxed-loop : Boxed-loop test₁ : Boxed-loop test₁ = quoteGoal g in boxed-loop test₂ : Term test₂ = quoteTerm Loop test₃ : Loop → List (Arg Term) test₃ _ = quoteContext macro m₄ : Term → Term → TC ⊤ m₄ _ hole = unify hole (def (quote ⊤) []) test₄ : Set test₄ = m₄ Loop macro m₅ : Term → TC ⊤ m₅ hole = bindTC (inferType (def (quote loop) [])) λ A → unify hole A test₅ : Set test₅ = m₅ macro m₆ : Term → TC ⊤ m₆ hole = bindTC (checkType (def (quote Loop) []) (agda-sort (lit 0))) λ A → unify hole A test₆ : Set test₆ = m₆ macro m₇ : Term → TC ⊤ m₇ hole = bindTC (quoteTC Loop) λ A → unify hole A test₇ : Set test₇ = m₇ Vec : Set → Nat → Set Vec A zero = ⊤ Vec A (suc n) = A × Vec A n macro m₈ : Term → TC ⊤ m₈ hole = bindTC (reduce V) λ V → unify hole V where varg = arg (arg-info visible relevant) V = def (quote Vec) (varg (def (quote Boxed-loop) []) ∷ varg (lit (nat 1)) ∷ []) test₈ : Set test₈ = m₈
-- V: letpair (x,y) = (V,W) in E --> E[ V,W / x,y ] module Properties.StepPair where open import Data.List open import Data.List.All open import Data.Product open import Relation.Nullary open import Relation.Binary.PropositionalEquality open import Typing open import Syntax open import Global open import Values open import Session open import Properties.Base -- this will require multiple steps to execute mklhs : ∀ {Φ t₁ t₂} → Expr (t₁ ∷ t₂ ∷ Φ) TUnit → Expr (t₁ ∷ t₂ ∷ Φ) TUnit mklhs {Φ} E = letbind (left (left (split-all-right Φ))) (pair (left (rght [])) (here []) (here [])) (letpair (left (split-all-right Φ)) (here []) E) reduction : ∀ {t₁ t₂} → (E : Expr (t₁ ∷ t₂ ∷ []) TUnit) → (v₁ : Val [] t₁) → (v₂ : Val [] t₂) → let ϱ = vcons ss-[] v₁ (vcons ss-[] v₂ (vnil []-inactive)) in let lhs = (run (left (left [])) ss-[] (mklhs E) ϱ (halt []-inactive UUnit)) in let rhs = (run (left (left [])) ss-[] E ϱ (halt []-inactive UUnit)) in restart lhs ≡ rhs reduction E v₁ v₂ with split-env (left (left [])) (vcons ss-[] v₁ (vcons ss-[] v₂ (vnil []-inactive))) ... | spe = refl reduction-open-type : Set reduction-open-type = ∀ {Φ t₁ t₂} (E : Expr (t₁ ∷ t₂ ∷ Φ) TUnit) (ϱ : VEnv [] (t₁ ∷ t₂ ∷ Φ)) → let lhs = run (left (left (split-all-left Φ))) ss-[] (mklhs E) ϱ (halt []-inactive UUnit) in let rhs = run (left (left (split-all-left _))) ss-[] E ϱ (halt []-inactive UUnit) in restart lhs ≡ rhs reduction-open : reduction-open-type reduction-open {Φ} E (vcons ss-[] v (vcons ss-[] v₁ ϱ)) rewrite split-rotate-lemma {Φ} | split-env-right-lemma0 ϱ with ssplit-compose3 ss-[] ss-[] ... | ssc3 rewrite split-env-right-lemma0 ϱ | split-rotate-lemma {Φ} = refl
{-# OPTIONS --without-K #-} module Explore.README where -- The core types behind exploration functions open import Explore.Core -- The core properties behind exploration functions open import Explore.Properties -- Lifting the dependent axiom of choice to sums and products open import Explore.BigDistr -- Constructions on top of exploration functions open import Explore.Explorable -- Specific constructions on top of summation functions open import Explore.Summable -- Exploration of Cartesian products (and Σ-types) open import Explore.Product -- Exploration of disjoint sums open import Explore.Sum -- Exploration of base types 𝟘, 𝟙, 𝟚, Fin n open import Explore.Zero open import Explore.One open import Explore.Two open import Explore.Fin -- A type universe of explorable types open import Explore.Universe.Type open import Explore.Universe.Base open import Explore.Universe -- Transporting explorations across isomorphisms open import Explore.Isomorphism -- From binary trees to explorations and back open import Explore.BinTree -- Exploration functions form a monad open import Explore.Monad -- Some high-level properties about group homomorphisms and -- group isomorphisms. -- For instance the indistinguisability (One-time-pad like) for groups open import Explore.Group -- In a (bit) guessing game, open import Explore.GuessingGameFlipping -- An example with a specific type: 6 sided dice open import Explore.Dice -- TODO unfinished -- BROKEN open import Explore.Function.Fin open import Explore.Subset
open import Relation.Binary using (IsDecEquivalence) open import Agda.Builtin.Equality module UnifyMguCorrectG (FunctionName : Set) ⦃ isDecEquivalenceA : IsDecEquivalence (_≡_ {A = FunctionName}) ⦄ (PredicateName VariableName : Set) where open import UnifyTermF FunctionName open import UnifyMguF FunctionName open import UnifyMguCorrectF FunctionName open import Data.Nat open import Data.Vec open import Function open import Data.Fin renaming (thin to thinF; thick to thickF) data Formula (n : ℕ) : Set where atomic : PredicateName → ∀ {t} → Vec (Term n) t → Formula n logical : Formula n → Formula n → Formula n quantified : Formula (suc n) → Formula n open import Relation.Binary.PropositionalEquality instance ThinFormula : Thin Formula Thin.thin ThinFormula x (atomic x₁ x₂) = atomic x₁ (thin x x₂) Thin.thin ThinFormula x (logical x₁ x₂) = logical (thin x x₁) (thin x x₂) Thin.thin ThinFormula x (quantified x₁) = quantified (thin zero x₁) Thin.thinfact1 ThinFormula f {atomic pn1 ts1} {atomic pn2 ts2} r = {!!} Thin.thinfact1 ThinFormula f {atomic x x₁} {logical y y₁} () Thin.thinfact1 ThinFormula f {atomic x x₁} {quantified y} () Thin.thinfact1 ThinFormula f {logical x x₁} {atomic x₂ x₃} () Thin.thinfact1 ThinFormula f {logical x x₁} {logical y y₁} x₂ = {!!} Thin.thinfact1 ThinFormula f {logical x x₁} {quantified y} () Thin.thinfact1 ThinFormula f {quantified x} {atomic x₁ x₂} () Thin.thinfact1 ThinFormula f {quantified x} {logical y y₁} () Thin.thinfact1 ThinFormula f {quantified x} {quantified y} x₁ = {!!} foo~ : ∀ {m₁ n₁} → (Fin m₁ → Term n₁) → Fin (suc m₁) → Term (suc n₁) foo~ f = (λ { zero → i zero ; (suc x) → thin zero (f x)}) foo~i≐i : ∀ {m} → foo~ {m} i ≐ i foo~i≐i zero = refl foo~i≐i (suc x) = refl instance SubstitutionFormula : Substitution Formula Substitution._◃_ SubstitutionFormula = _◃′_ where _◃′_ : ∀ {m n} -> (f : m ~> n) -> Formula m -> Formula n f ◃′ atomic 𝑃 τs = atomic 𝑃 (f ◃ τs) f ◃′ logical φ₁ φ₂ = logical (f ◃ φ₁) (f ◃ φ₂) f ◃′ quantified φ = quantified (foo~ f ◃ φ) instance SubstitutionExtensionalityFormula : SubstitutionExtensionality Formula SubstitutionExtensionality.◃ext SubstitutionExtensionalityFormula x (atomic x₁ x₂) = cong (atomic x₁) (◃ext x x₂) SubstitutionExtensionality.◃ext SubstitutionExtensionalityFormula x (logical t t₁) = cong₂ logical (◃ext x t) (◃ext x t₁) SubstitutionExtensionality.◃ext SubstitutionExtensionalityFormula x (quantified t) = cong quantified ((◃ext (λ { zero → refl ; (suc x₁) → cong (mapTerm suc) (x x₁)}) t)) -- instance SubFact1Formula : Sub.Fact1 Formula Sub.Fact1.fact1 SubFact1Formula (atomic x x₁) = cong (atomic x) (Sub.fact1 x₁) Sub.Fact1.fact1 SubFact1Formula (logical t t₁) = cong₂ logical (Sub.fact1 t) (Sub.fact1 t₁) Sub.Fact1.fact1 SubFact1Formula {n} (quantified φ) = cong quantified (trans (◃ext {Formula} {_} {_} {foo~ {_} i} {i} (foo~i≐i {_}) φ) (Sub.fact1 φ)) Unifies⋆F : ∀ {m} (s t : Formula m) -> Property⋆ m Unifies⋆F s t f = f ◃ s ≡ f ◃ t
module Ordinals where import Level open import Data.Product open import Relation.Binary.PropositionalEquality open import Function open import Data.Nat using (ℕ) renaming (zero to z; suc to s) open import Data.Empty postulate ext₀ : Extensionality Level.zero Level.zero ext₁ : Extensionality Level.zero (Level.suc Level.zero) data Ord : Set₁ where zero : Ord succ : Ord → Ord sup : (A : Set) → (f : A → Ord) → Ord infixl 10 _≤_ module CountableOrdinals where inj-ℕ-Ord : ℕ → Ord inj-ℕ-Ord z = zero inj-ℕ-Ord (s n) = succ (inj-ℕ-Ord n) ω : Ord ω = sup ℕ inj-ℕ-Ord _∔_ : Ord → ℕ → Ord α ∔ z = α α ∔ (s n) = succ (α ∔ n) _ẋ_ : Ord → ℕ → Ord α ẋ z = zero α ẋ (s n) = sup ℕ (λ k → (α ẋ n) ∔ k) _^^_ : Ord → ℕ → Ord α ^^ z = succ zero α ^^ (s n) = sup ℕ (λ k → (α ^^ n) ẋ k) ω+ : ℕ → Ord ω+ n = ω ∔ n ω× : ℕ → Ord ω× n = ω ẋ n ω^ : ℕ → Ord ω^ n = ω ^^ n ω+1≢ω : sup ℕ (succ ∘ inj-ℕ-Ord) ≡ ω → ⊥ ω+1≢ω p = {!!} -- This should not be provable! -- succ-sup : ∀ A f → sup A (succ ∘ f) ≡ succ (sup A f) -- succ-sup A f = {!!} _+_ : Ord → Ord → Ord α + zero = α α + succ β = succ (α + β) α + sup A f = sup A (λ x → α + f x) zeroₗ : ∀ α → zero + α ≡ α zeroₗ zero = refl zeroₗ (succ α) = cong succ (zeroₗ α) zeroₗ (sup A f) = cong (sup A) (ext₁ (λ x → zeroₗ (f x))) succₗ : ∀ α β → succ α + β ≡ succ (α + β) succₗ α zero = refl succₗ α (succ β) = cong succ (succₗ α β) succₗ α (sup A f) = {!!} -- trans (cong (sup A) (ext₁ (λ x → succₗ α (f x)))) -- (succ-sup A (λ x → α + f x)) _≤_ : Ord → Ord → Set₁ α ≤ β = ∃ λ γ → α + γ ≡ β ≤-refl : ∀ α → α ≤ α ≤-refl α = (zero , refl) zero-min : ∀ α → zero ≤ α zero-min α = (α , zeroₗ α) ≤-succ : ∀ α β → α ≤ β → succ α ≤ succ β ≤-succ α β (γ , p) = (γ , trans (succₗ α γ) (cong succ p)) ≤-step : ∀ α β → α ≤ β → α ≤ succ β ≤-step α β (γ , p) = (succ γ , cong succ p) ≤-sup-step : ∀ α A f → (∀ x → α ≤ f x) → α ≤ sup A f ≤-sup-step α A f p = (sup A (proj₁ ∘ p) , cong (sup A) (ext₁ (proj₂ ∘ p))) ≤-supₗ : ∀ A f β → (∀ x → f x ≤ β) → sup A f ≤ β ≤-supₗ A f β p = (sup A (proj₁ ∘ p) , {!!}) where q : (x : A) → (f x + proj₁ (p x)) ≡ β q = proj₂ ∘ p ≤-sup : ∀ A f g → (∀ x → f x ≤ g x) → sup A f ≤ sup A g ≤-sup A f g p = (sup A (proj₁ ∘ p) , {!!}) -- cong (sup A) (ext₁ {!!})) where q : (x : A) → (f x + proj₁ (p x)) ≡ g x q = proj₂ ∘ p q' : (x : A) → (sup A f + (proj₁ ∘ p) x) ≡ g x q' = {!!} lem₁ : ∀ α β → α ≤ α + β lem₁ α zero = ≤-refl α lem₁ α (succ β) = ≤-step α (α + β) (lem₁ α β) lem₁ α (sup A f) = ≤-sup-step α A (λ x → α + f x) (λ x → lem₁ α (f x)) lem₂ : ∀ α β → β ≤ α + β lem₂ α zero = zero-min (α + zero) lem₂ α (succ β) = ≤-succ β (α + β) (lem₂ α β) lem₂ α (sup A f) = ≤-sup A f (λ x → α + f x) (λ x → lem₂ α (f x))