Datasets:
license: cc-by-nc-4.0
language:
- it
tags:
- salaries
- italy
- tech
- survey
- compensation
pretty_name: Datapizza Salaries
size_categories:
- 10K<n<100K
dataset_info:
features:
- name: jobTitle
dtype: string
- name: monthsOfExperience
dtype: int64
- name: educationType
dtype: string
- name: companyIndustry
dtype: string
- name: companySize
dtype: string
- name: province
dtype: string
- name: workMode
dtype: string
- name: technologies
sequence: string
- name: salary
dtype: int64
- name: age
dtype: int64
- name: gender
dtype: string
- name: aiUsageFrequency
dtype: int64
- name: aiTechnologies
sequence: string
- name: aiTaskTypes
sequence: string
- name: aiUpdateSources
sequence: string
- name: admiredTechnologies
sequence: string
- name: editor
dtype: string
- name: rating
dtype: int64
- name: valid
dtype: bool
- name: submittedAt
dtype: string
Datapizza Salaries
A crowd-sourced dataset of salaries from tech workers in Italy, collected via anonymous survey by Datapizza.
Dataset Description
This dataset contains self-reported salary and professional information from technology workers across Italy. Data is collected through an anonymous survey and updated weekly.
Note: Data submitted before November 6th, 2024 contains only partial information, as the initial survey version did not collect fields like
educationType,age,aiUsageFrequency, and others.
Features
| Field | Type | Description |
|---|---|---|
jobTitle |
string | Job title (e.g., "software_developer", "data_scientist") |
monthsOfExperience |
int | Professional experience in months |
educationType |
string | Education level (optional) |
companyIndustry |
string | Industry sector (optional) |
companySize |
string | Company headcount range (optional) |
province |
string | Italian province |
workMode |
string | Work arrangement |
technologies |
list[string] | Primary technologies/skills used |
salary |
int | RAL (Gross Annual Salary) in EUR |
age |
int | Respondent age (optional) |
gender |
string | Gender (optional) |
aiUsageFrequency |
int | AI usage frequency 1-5 (optional) |
aiTechnologies |
list[string] | AI tools used (optional) |
aiTaskTypes |
list[string] | AI task types (optional) |
aiUpdateSources |
list[string] | AI news sources (optional) |
admiredTechnologies |
list[string] | Technologies respondent wants to learn (optional) |
editor |
string | Primary code editor/IDE (optional) |
rating |
int | Survey feedback rating 1-5 (optional) |
valid |
bool | Submission validation flag |
submittedAt |
string | Submission timestamp (ISO 8601) |
Categorical Values
educationType
high_school, bachelors_degree, masters_degree, phd
companySize
1-10, 11-50, 51-200, 201-500, 501-1000, 1001-5000, 5001+
workMode
onsite, hybrid, remote
gender
male, female, non_binary, prefer_not_to_say
companyIndustry
bancario, assicurativo, finanziario_altro, consulenza_servizi_professionali, tecnologia_ict, retail_gdo, moda_lusso, manifattura_generica, automotive, chimica_materiali, energia_utilities, telecomunicazioni, sanita_pharma_biotech, media_intrattenimento_editoria, logistica_trasporti, immobiliare_costruzioni, alimentare_beverage, agricoltura_agroindustria, turismo_ospitalita, istruzione_ricerca, non_profit_ong_associazioni, difesa_aerospazio, pubblica_amministrazione_enti_governativi, altro_indeterminato
aiTechnologies
chat_gpt, claude, cursor, claude_code, gemini, microsoft_copilot, github_copilot, codeium, tabnine, amazon_code_whisperer, jetbrains_ai, perplexity, mistral_ai, llama, v0, windsurf, cody, supermaven, continue_dev, devin, replit_ai, bolt
aiTaskTypes
coding, study_tutoring, doc_analysis, data_excel, editing, brainstorming, image_generation, translation, search_research, planning, meeting_notes
aiUpdateSources
x_twitter, newsletter, reddit, hugging_face, hacker_news, youtube, linkedin, podcasts, discord, github, official_blogs
editor
vscode, cursor, neovim, vim, zed, intellij_idea, webstorm, pycharm, sublime_text, emacs, atom, eclipse, visual_studio, android_studio, xcode, windsurf, rider, fleet, phpstorm, goland, rubymine, clion, notepad_plus_plus, helix
Usage
from datasets import load_dataset
dataset = load_dataset("datapizza-ai-lab/salaries")
df = dataset["train"].to_pandas()
# Filter for remote workers in Milan
remote_milan = df[(df["province"] == "Milano") & (df["workMode"] == "remote")]
# Average salary by job title
avg_by_role = df.groupby("jobTitle")["salary"].mean().sort_values(ascending=False)
Source
Data collected via salaries.datapizza.tech — an anonymous salary survey for Italian tech workers.
License
CC-BY-NC-4.0 — You may share and adapt this dataset with attribution for non-commercial purposes.
Citation
@dataset{datapizza_salaries_2024,
title={Datapizza Salaries: Italian Tech Worker Compensation Dataset},
author={Datapizza},
year={2024},
url={https://huggingface.co/datasets/datapizza-ai-lab/salaries},
license={CC-BY-NC-4.0}
}