salaries / README.md
lab-ai-datapizza's picture
Update README.md
0f2db37 verified
metadata
license: cc-by-nc-4.0
language:
  - it
tags:
  - salaries
  - italy
  - tech
  - survey
  - compensation
pretty_name: Datapizza Salaries
size_categories:
  - 10K<n<100K
dataset_info:
  features:
    - name: jobTitle
      dtype: string
    - name: monthsOfExperience
      dtype: int64
    - name: educationType
      dtype: string
    - name: companyIndustry
      dtype: string
    - name: companySize
      dtype: string
    - name: province
      dtype: string
    - name: workMode
      dtype: string
    - name: technologies
      sequence: string
    - name: salary
      dtype: int64
    - name: age
      dtype: int64
    - name: gender
      dtype: string
    - name: aiUsageFrequency
      dtype: int64
    - name: aiTechnologies
      sequence: string
    - name: aiTaskTypes
      sequence: string
    - name: aiUpdateSources
      sequence: string
    - name: admiredTechnologies
      sequence: string
    - name: editor
      dtype: string
    - name: rating
      dtype: int64
    - name: valid
      dtype: bool
    - name: submittedAt
      dtype: string

Datapizza Salaries

A crowd-sourced dataset of salaries from tech workers in Italy, collected via anonymous survey by Datapizza.

Dataset Description

This dataset contains self-reported salary and professional information from technology workers across Italy. Data is collected through an anonymous survey and updated weekly.

Note: Data submitted before November 6th, 2024 contains only partial information, as the initial survey version did not collect fields like educationType, age, aiUsageFrequency, and others.

Features

Field Type Description
jobTitle string Job title (e.g., "software_developer", "data_scientist")
monthsOfExperience int Professional experience in months
educationType string Education level (optional)
companyIndustry string Industry sector (optional)
companySize string Company headcount range (optional)
province string Italian province
workMode string Work arrangement
technologies list[string] Primary technologies/skills used
salary int RAL (Gross Annual Salary) in EUR
age int Respondent age (optional)
gender string Gender (optional)
aiUsageFrequency int AI usage frequency 1-5 (optional)
aiTechnologies list[string] AI tools used (optional)
aiTaskTypes list[string] AI task types (optional)
aiUpdateSources list[string] AI news sources (optional)
admiredTechnologies list[string] Technologies respondent wants to learn (optional)
editor string Primary code editor/IDE (optional)
rating int Survey feedback rating 1-5 (optional)
valid bool Submission validation flag
submittedAt string Submission timestamp (ISO 8601)

Categorical Values

educationType

high_school, bachelors_degree, masters_degree, phd

companySize

1-10, 11-50, 51-200, 201-500, 501-1000, 1001-5000, 5001+

workMode

onsite, hybrid, remote

gender

male, female, non_binary, prefer_not_to_say

companyIndustry

bancario, assicurativo, finanziario_altro, consulenza_servizi_professionali, tecnologia_ict, retail_gdo, moda_lusso, manifattura_generica, automotive, chimica_materiali, energia_utilities, telecomunicazioni, sanita_pharma_biotech, media_intrattenimento_editoria, logistica_trasporti, immobiliare_costruzioni, alimentare_beverage, agricoltura_agroindustria, turismo_ospitalita, istruzione_ricerca, non_profit_ong_associazioni, difesa_aerospazio, pubblica_amministrazione_enti_governativi, altro_indeterminato

aiTechnologies

chat_gpt, claude, cursor, claude_code, gemini, microsoft_copilot, github_copilot, codeium, tabnine, amazon_code_whisperer, jetbrains_ai, perplexity, mistral_ai, llama, v0, windsurf, cody, supermaven, continue_dev, devin, replit_ai, bolt

aiTaskTypes

coding, study_tutoring, doc_analysis, data_excel, editing, brainstorming, image_generation, translation, search_research, planning, meeting_notes

aiUpdateSources

x_twitter, newsletter, reddit, hugging_face, hacker_news, youtube, linkedin, podcasts, discord, github, official_blogs

editor

vscode, cursor, neovim, vim, zed, intellij_idea, webstorm, pycharm, sublime_text, emacs, atom, eclipse, visual_studio, android_studio, xcode, windsurf, rider, fleet, phpstorm, goland, rubymine, clion, notepad_plus_plus, helix

Usage

from datasets import load_dataset

dataset = load_dataset("datapizza-ai-lab/salaries")
df = dataset["train"].to_pandas()

# Filter for remote workers in Milan
remote_milan = df[(df["province"] == "Milano") & (df["workMode"] == "remote")]

# Average salary by job title
avg_by_role = df.groupby("jobTitle")["salary"].mean().sort_values(ascending=False)

Source

Data collected via salaries.datapizza.tech — an anonymous salary survey for Italian tech workers.

License

CC-BY-NC-4.0 — You may share and adapt this dataset with attribution for non-commercial purposes.

Citation

@dataset{datapizza_salaries_2024,
  title={Datapizza Salaries: Italian Tech Worker Compensation Dataset},
  author={Datapizza},
  year={2024},
  url={https://huggingface.co/datasets/datapizza-ai-lab/salaries},
  license={CC-BY-NC-4.0}
}