Datasets:
File size: 9,826 Bytes
89a8aa4 4537acd 89a8aa4 bd79b44 9199547 8cce1cc fdc0ad9 4537acd 89a8aa4 218162b b6d61ba 218162b b6d61ba 218162b b6d61ba 218162b b6d61ba 218162b 4537acd 89a8aa4 4537acd 89a8aa4 4537acd 89a8aa4 4537acd 89a8aa4 4537acd 89a8aa4 4537acd 89a8aa4 4537acd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 |
---
annotations_creators:
- human-annotated
language_creators: []
language:
- cmn
- deu
- eng
- fra
- rus
license: unknown
multilinguality: translated
source_datasets:
- mteb/bucc-bitext-mining
task_categories:
- translation
task_ids: []
pretty_name: MTEB Benchmark
configs:
- config_name: default
data_files:
- path: test/*.jsonl.gz
split: test
- config_name: fr-en
data_files:
- path: test/fr-en.jsonl.gz
split: test
- config_name: ru-en
data_files:
- path: test/ru-en.jsonl.gz
split: test
- config_name: de-en
data_files:
- path: test/de-en.jsonl.gz
split: test
- config_name: zh-en
data_files:
- path: test/zh-en.jsonl.gz
split: test
tags:
- mteb
- text
---
<!-- adapted from https://github.com/huggingface/huggingface_hub/blob/v0.30.2/src/huggingface_hub/templates/datasetcard_template.md -->
<div align="center" style="padding: 40px 20px; background-color: white; border-radius: 12px; box-shadow: 0 2px 10px rgba(0, 0, 0, 0.05); max-width: 600px; margin: 0 auto;">
<h1 style="font-size: 3.5rem; color: #1a1a1a; margin: 0 0 20px 0; letter-spacing: 2px; font-weight: 700;">BUCC.v2</h1>
<div style="font-size: 1.5rem; color: #4a4a4a; margin-bottom: 5px; font-weight: 300;">An <a href="https://github.com/embeddings-benchmark/mteb" style="color: #2c5282; font-weight: 600; text-decoration: none;" onmouseover="this.style.textDecoration='underline'" onmouseout="this.style.textDecoration='none'">MTEB</a> dataset</div>
<div style="font-size: 0.9rem; color: #2c5282; margin-top: 10px;">Massive Text Embedding Benchmark</div>
</div>
BUCC bitext mining dataset
| | |
|---------------|---------------------------------------------|
| Task category | t2t |
| Domains | Written |
| Reference | https://comparable.limsi.fr/bucc2018/bucc2018-task.html |
## How to evaluate on this task
You can evaluate an embedding model on this dataset using the following code:
```python
import mteb
task = mteb.get_tasks(["BUCC.v2"])
evaluator = mteb.MTEB(task)
model = mteb.get_model(YOUR_MODEL)
evaluator.run(model)
```
<!-- Datasets want link to arxiv in readme to autolink dataset with paper -->
To learn more about how to run models on `mteb` task check out the [GitHub repitory](https://github.com/embeddings-benchmark/mteb).
## Citation
If you use this dataset, please cite the dataset as well as [mteb](https://github.com/embeddings-benchmark/mteb), as this dataset likely includes additional processing as a part of the [MMTEB Contribution](https://github.com/embeddings-benchmark/mteb/tree/main/docs/mmteb).
```bibtex
@inproceedings{zweigenbaum-etal-2017-overview,
abstract = {This paper presents the BUCC 2017 shared task on parallel sentence extraction from comparable corpora. It recalls the design of the datasets, presents their final construction and statistics and the methods used to evaluate system results. 13 runs were submitted to the shared task by 4 teams, covering three of the four proposed language pairs: French-English (7 runs), German-English (3 runs), and Chinese-English (3 runs). The best F-scores as measured against the gold standard were 0.84 (German-English), 0.80 (French-English), and 0.43 (Chinese-English). Because of the design of the dataset, in which not all gold parallel sentence pairs are known, these are only minimum values. We examined manually a small sample of the false negative sentence pairs for the most precise French-English runs and estimated the number of parallel sentence pairs not yet in the provided gold standard. Adding them to the gold standard leads to revised estimates for the French-English F-scores of at most +1.5pt. This suggests that the BUCC 2017 datasets provide a reasonable approximate evaluation of the parallel sentence spotting task.},
address = {Vancouver, Canada},
author = {Zweigenbaum, Pierre and
Sharoff, Serge and
Rapp, Reinhard},
booktitle = {Proceedings of the 10th Workshop on Building and Using Comparable Corpora},
doi = {10.18653/v1/W17-2512},
editor = {Sharoff, Serge and
Zweigenbaum, Pierre and
Rapp, Reinhard},
month = aug,
pages = {60--67},
publisher = {Association for Computational Linguistics},
title = {Overview of the Second {BUCC} Shared Task: Spotting Parallel Sentences in Comparable Corpora},
url = {https://aclanthology.org/W17-2512},
year = {2017},
}
@article{enevoldsen2025mmtebmassivemultilingualtext,
title={MMTEB: Massive Multilingual Text Embedding Benchmark},
author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
publisher = {arXiv},
journal={arXiv preprint arXiv:2502.13595},
year={2025},
url={https://arxiv.org/abs/2502.13595},
doi = {10.48550/arXiv.2502.13595},
}
@article{muennighoff2022mteb,
author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils},
title = {MTEB: Massive Text Embedding Benchmark},
publisher = {arXiv},
journal={arXiv preprint arXiv:2210.07316},
year = {2022}
url = {https://arxiv.org/abs/2210.07316},
doi = {10.48550/ARXIV.2210.07316},
}
```
# Dataset Statistics
<details>
<summary> Dataset Statistics</summary>
The following code contains the descriptive statistics from the task. These can also be obtained using:
```python
import mteb
task = mteb.get_task("BUCC.v2")
desc_stats = task.metadata.descriptive_stats
```
```json
{
"test": {
"num_samples": 35000,
"number_of_characters": 6640032,
"unique_pairs": 34978,
"min_sentence1_length": 16,
"average_sentence1_length": 99.10931428571429,
"max_sentence1_length": 204,
"unique_sentence1": 34978,
"min_sentence2_length": 42,
"average_sentence2_length": 90.60588571428572,
"max_sentence2_length": 159,
"unique_sentence2": 25306,
"hf_subset_descriptive_stats": {
"de-en": {
"num_samples": 9580,
"number_of_characters": 1919197,
"unique_pairs": 9573,
"min_sentence1_length": 50,
"average_sentence1_length": 109.07974947807934,
"max_sentence1_length": 204,
"unique_sentence1": 9573,
"min_sentence2_length": 46,
"average_sentence2_length": 91.25396659707724,
"max_sentence2_length": 155,
"unique_sentence2": 9570
},
"fr-en": {
"num_samples": 9086,
"number_of_characters": 1677545,
"unique_pairs": 9081,
"min_sentence1_length": 43,
"average_sentence1_length": 99.31785163988553,
"max_sentence1_length": 174,
"unique_sentence1": 9081,
"min_sentence2_length": 42,
"average_sentence2_length": 85.3117983711204,
"max_sentence2_length": 159,
"unique_sentence2": 9076
},
"ru-en": {
"num_samples": 14435,
"number_of_characters": 2808206,
"unique_pairs": 14425,
"min_sentence1_length": 40,
"average_sentence1_length": 101.6593003117423,
"max_sentence1_length": 186,
"unique_sentence1": 14425,
"min_sentence2_length": 45,
"average_sentence2_length": 92.88216141323173,
"max_sentence2_length": 159,
"unique_sentence2": 14424
},
"zh-en": {
"num_samples": 1899,
"number_of_characters": 235084,
"unique_pairs": 1899,
"min_sentence1_length": 16,
"average_sentence1_length": 28.429699842022117,
"max_sentence1_length": 40,
"unique_sentence1": 1899,
"min_sentence2_length": 48,
"average_sentence2_length": 95.3638757240653,
"max_sentence2_length": 159,
"unique_sentence2": 1899
}
}
}
}
```
</details>
---
*This dataset card was automatically generated using [MTEB](https://github.com/embeddings-benchmark/mteb)* |