SentenceTransformer based on sentence-transformers/all-MiniLM-L12-v2
This is a sentence-transformers model finetuned from sentence-transformers/all-MiniLM-L12-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/all-MiniLM-L12-v2
- Maximum Sequence Length: 128 tokens
- Output Dimensionality: 384 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the ๐ค Hub
model = SentenceTransformer("hanwenzhu/all-MiniLM-L12-v2-lr2e-4-bs256-nneg3-ml-ne5-apr25")
# Run inference
sentences = [
'Mathlib.Data.Bool.Count#6',
'List.count_not_add_count',
'lie_zsmul',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
Unnamed Dataset
- Size: 8,429,545 training samples
- Columns:
state_nameandpremise_name - Approximate statistics based on the first 1000 samples:
state_name premise_name type string string details - min: 10 tokens
- mean: 15.51 tokens
- max: 22 tokens
- min: 3 tokens
- mean: 11.11 tokens
- max: 40 tokens
- Samples:
state_name premise_name Mathlib.Algebra.Colimit.Module#111DirectSum.induction_onMathlib.Algebra.Colimit.Module#111map_addMathlib.Algebra.Colimit.Module#111AddMonoidHom.comp_assoc - Loss:
loss.MaskedCachedMultipleNegativesRankingLosswith these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Evaluation Dataset
Unnamed Dataset
- Size: 2,120 evaluation samples
- Columns:
state_nameandpremise_name - Approximate statistics based on the first 1000 samples:
state_name premise_name type string string details - min: 10 tokens
- mean: 16.26 tokens
- max: 26 tokens
- min: 3 tokens
- mean: 11.83 tokens
- max: 33 tokens
- Samples:
state_name premise_name Batteries.Control.ForInStep.Lemmas#10ForInStep.done_bindListBatteries.Data.ByteArray#12Fin.val_lt_of_leBatteries.Data.ByteArray#12Nat.le_refl - Loss:
loss.MaskedCachedMultipleNegativesRankingLosswith these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: stepsper_device_train_batch_size: 256per_device_eval_batch_size: 64learning_rate: 0.0002num_train_epochs: 5.0lr_scheduler_type: cosinewarmup_ratio: 0.03bf16: Truedataloader_num_workers: 4resume_from_checkpoint: True
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 256per_device_eval_batch_size: 64per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 0.0002weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 5.0max_steps: -1lr_scheduler_type: cosinelr_scheduler_kwargs: {}warmup_ratio: 0.03warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Truefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 4dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Truehub_model_id: Nonehub_strategy: every_savehub_private_repo: Falsehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseeval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Nonedispatch_batches: Nonesplit_batches: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseeval_use_gather_object: Falsebatch_sampler: batch_samplermulti_dataset_batch_sampler: proportional
Training Logs
Click to expand
| Epoch | Step | Training Loss |
|---|---|---|
| 4.9520 | 163060 | 0.6739 |
| 4.9523 | 163070 | 0.7073 |
| 4.9526 | 163080 | 0.7318 |
| 4.9529 | 163090 | 0.6999 |
| 4.9532 | 163100 | 0.6871 |
| 4.9535 | 163110 | 0.6941 |
| 4.9538 | 163120 | 0.7311 |
| 4.9541 | 163130 | 0.6666 |
| 4.9544 | 163140 | 0.6841 |
| 4.9547 | 163150 | 0.7188 |
| 4.9551 | 163160 | 0.7337 |
| 4.9554 | 163170 | 0.6917 |
| 4.9557 | 163180 | 0.6745 |
| 4.9560 | 163190 | 0.7139 |
| 4.9563 | 163200 | 0.696 |
| 4.9566 | 163210 | 0.7142 |
| 4.9569 | 163220 | 0.6719 |
| 4.9572 | 163230 | 0.6492 |
| 4.9575 | 163240 | 0.7019 |
| 4.9578 | 163250 | 0.701 |
| 4.9581 | 163260 | 0.7217 |
| 4.9584 | 163270 | 0.6953 |
| 4.9587 | 163280 | 0.6928 |
| 4.9590 | 163290 | 0.6868 |
| 4.9593 | 163300 | 0.6912 |
| 4.9596 | 163310 | 0.7042 |
| 4.9599 | 163320 | 0.6771 |
| 4.9602 | 163330 | 0.7192 |
| 4.9605 | 163340 | 0.6948 |
| 4.9608 | 163350 | 0.7118 |
| 4.9611 | 163360 | 0.6937 |
| 4.9614 | 163370 | 0.6885 |
| 4.9617 | 163380 | 0.6518 |
| 4.9620 | 163390 | 0.7212 |
| 4.9623 | 163400 | 0.7011 |
| 4.9626 | 163410 | 0.6819 |
| 4.9629 | 163420 | 0.68 |
| 4.9633 | 163430 | 0.6884 |
| 4.9636 | 163440 | 0.7004 |
| 4.9639 | 163450 | 0.6905 |
| 4.9642 | 163460 | 0.7149 |
| 4.9645 | 163470 | 0.7228 |
| 4.9648 | 163480 | 0.7009 |
| 4.9651 | 163490 | 0.7261 |
| 4.9654 | 163500 | 0.687 |
| 4.9657 | 163510 | 0.6717 |
| 4.9660 | 163520 | 0.7126 |
| 4.9663 | 163530 | 0.7223 |
| 4.9666 | 163540 | 0.7014 |
| 4.9669 | 163550 | 0.6969 |
| 4.9672 | 163560 | 0.7203 |
| 4.9675 | 163570 | 0.7086 |
| 4.9678 | 163580 | 0.6947 |
| 4.9681 | 163590 | 0.7196 |
| 4.9684 | 163600 | 0.6756 |
| 4.9687 | 163610 | 0.6892 |
| 4.9690 | 163620 | 0.719 |
| 4.9693 | 163630 | 0.7274 |
| 4.9696 | 163640 | 0.6894 |
| 4.9699 | 163650 | 0.7596 |
| 4.9702 | 163660 | 0.6815 |
| 4.9705 | 163670 | 0.6792 |
| 4.9708 | 163680 | 0.658 |
| 4.9711 | 163690 | 0.6973 |
| 4.9715 | 163700 | 0.6555 |
| 4.9718 | 163710 | 0.7155 |
| 4.9721 | 163720 | 0.6896 |
| 4.9724 | 163730 | 0.6631 |
| 4.9727 | 163740 | 0.6781 |
| 4.9730 | 163750 | 0.7014 |
| 4.9733 | 163760 | 0.6866 |
| 4.9736 | 163770 | 0.7077 |
| 4.9739 | 163780 | 0.6985 |
| 4.9742 | 163790 | 0.6926 |
| 4.9745 | 163800 | 0.7179 |
| 4.9748 | 163810 | 0.706 |
| 4.9751 | 163820 | 0.7228 |
| 4.9754 | 163830 | 0.7007 |
| 4.9757 | 163840 | 0.6748 |
| 4.9760 | 163850 | 0.7414 |
| 4.9763 | 163860 | 0.6943 |
| 4.9766 | 163870 | 0.7068 |
| 4.9769 | 163880 | 0.6576 |
| 4.9772 | 163890 | 0.6958 |
| 4.9775 | 163900 | 0.7205 |
| 4.9778 | 163910 | 0.7117 |
| 4.9781 | 163920 | 0.6775 |
| 4.9784 | 163930 | 0.655 |
| 4.9787 | 163940 | 0.698 |
| 4.9790 | 163950 | 0.6913 |
| 4.9793 | 163960 | 0.6906 |
| 4.9797 | 163970 | 0.662 |
| 4.9800 | 163980 | 0.6731 |
| 4.9803 | 163990 | 0.6722 |
| 4.9806 | 164000 | 0.7155 |
| 4.9809 | 164010 | 0.692 |
| 4.9812 | 164020 | 0.6726 |
| 4.9815 | 164030 | 0.7109 |
| 4.9818 | 164040 | 0.6764 |
| 4.9821 | 164050 | 0.6889 |
| 4.9824 | 164060 | 0.6978 |
| 4.9827 | 164070 | 0.7357 |
| 4.9830 | 164080 | 0.6892 |
| 4.9833 | 164090 | 0.6848 |
| 4.9836 | 164100 | 0.6877 |
| 4.9839 | 164110 | 0.7118 |
| 4.9842 | 164120 | 0.6916 |
| 4.9845 | 164130 | 0.6752 |
| 4.9848 | 164140 | 0.7099 |
| 4.9851 | 164150 | 0.6937 |
| 4.9854 | 164160 | 0.7149 |
| 4.9857 | 164170 | 0.6705 |
| 4.9860 | 164180 | 0.6962 |
| 4.9863 | 164190 | 0.7078 |
| 4.9866 | 164200 | 0.7003 |
| 4.9869 | 164210 | 0.6927 |
| 4.9872 | 164220 | 0.7375 |
| 4.9875 | 164230 | 0.7055 |
| 4.9879 | 164240 | 0.6788 |
| 4.9882 | 164250 | 0.6631 |
| 4.9885 | 164260 | 0.7268 |
| 4.9888 | 164270 | 0.6968 |
| 4.9891 | 164280 | 0.6878 |
| 4.9894 | 164290 | 0.7003 |
| 4.9897 | 164300 | 0.6862 |
| 4.9900 | 164310 | 0.7128 |
| 4.9903 | 164320 | 0.6515 |
| 4.9906 | 164330 | 0.7074 |
| 4.9909 | 164340 | 0.706 |
| 4.9912 | 164350 | 0.6826 |
| 4.9915 | 164360 | 0.6824 |
| 4.9918 | 164370 | 0.7031 |
| 4.9921 | 164380 | 0.7036 |
| 4.9924 | 164390 | 0.7109 |
| 4.9927 | 164400 | 0.7091 |
| 4.9930 | 164410 | 0.6946 |
| 4.9933 | 164420 | 0.6801 |
| 4.9936 | 164430 | 0.7044 |
| 4.9939 | 164440 | 0.7027 |
| 4.9942 | 164450 | 0.6749 |
| 4.9945 | 164460 | 0.6933 |
| 4.9948 | 164470 | 0.709 |
| 4.9951 | 164480 | 0.6765 |
| 4.9954 | 164490 | 0.7224 |
| 4.9957 | 164500 | 0.7002 |
| 4.9961 | 164510 | 0.7148 |
| 4.9964 | 164520 | 0.7119 |
| 4.9967 | 164530 | 0.6932 |
| 4.9970 | 164540 | 0.7499 |
| 4.9973 | 164550 | 0.6967 |
| 4.9976 | 164560 | 0.6849 |
| 4.9979 | 164570 | 0.7077 |
| 4.9982 | 164580 | 0.6726 |
| 4.9985 | 164590 | 0.6885 |
| 4.9988 | 164600 | 0.7229 |
| 4.9991 | 164610 | 0.6601 |
| 4.9994 | 164620 | 0.6994 |
| 4.9997 | 164630 | 0.6934 |
| 5.0 | 164640 | 0.6601 |
Framework Versions
- Python: 3.11.8
- Sentence Transformers: 3.1.1
- Transformers: 4.45.1
- PyTorch: 2.5.1.post302
- Accelerate: 0.34.2
- Datasets: 3.0.0
- Tokenizers: 0.20.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MaskedCachedMultipleNegativesRankingLoss
@misc{gao2021scaling,
title={Scaling Deep Contrastive Learning Batch Size under Memory Limited Setup},
author={Luyu Gao and Yunyi Zhang and Jiawei Han and Jamie Callan},
year={2021},
eprint={2101.06983},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
- Downloads last month
- 4
Model tree for hanwenzhu/all-MiniLM-L12-v2-lr2e-4-bs256-nneg3-ml-ne5-apr25
Base model
sentence-transformers/all-MiniLM-L12-v2