Bowman Chrome Prospects Classifier
A fine-tuned CLIP model for classifying Bowman Chrome prospect baseball cards into their parallel/rarity variants. The model was trained on this dataset
Model Description
This model is a CLIP (Contrastive Language-Image Pre-training) model fine-tuned via contrastive loss to identify the specific parallel type of Bowman Chrome prospect baseball cards from images alone. It can distinguish between base cards and various rare parallels including Shimmer, Wave, Lava, Atomic, Mojo, X-Fractor, Sapphire, and many more.
- Accuracy: 90.84%
- Base Model: CLIP
- Fine-tuning Method: Contrastive Loss
- Task: Image Classification (Baseball Card Parallel Identification)
Usage
from transformers import CLIPProcessor, CLIPModel
model = CLIPModel.from_pretrained("hazelbestt/bowman_prospects_classifier")
processor = CLIPProcessor.from_pretrained("hazelbestt/bowman_prospects_classifier", use_fast=True)
Example Inference
from PIL import Image
import torch
image = Image.open("your_card_image.jpg")
model = CLIPModel.from_pretrained("hazelbestt/bowman_prospects_classifier")
processor = CLIPProcessor.from_pretrained("hazelbestt/bowman_prospects_classifier", use_fast=True)
proc = processor(
text=None,
images=image,
return_tensors="pt",
padding=True
)
with torch.no_grad():
img_feat = model.get_image_features(proc["pixel_values"].to(device))
img_feat = img_feat / img_feat.norm(dim=-1, keepdim=True)
labels = ["base", "purple shimmer", "gold mojo", "red atomic", "sapphire"] # subset example
text_proc = processor(text=labels, return_tensors="pt", padding=True, truncation=True)
text_input_ids = text_proc["input_ids"].to(device)
text_attention = text_proc["attention_mask"].to(device)
with torch.no_grad():
txt_feat = model.get_text_features(
input_ids=text_input_ids,
attention_mask=text_attention,
)
txt_feat = txt_feat / txt_feat.norm(dim=-1, keepdim=True)
sims = (img_feat @ txt_feat.T).squeeze(0)
best_idx = sims.argmax().item()
print(f"Predicted: {labels[best_idx]}")
Supported Labels
The model can classify cards into the following parallel categories:
Shimmer Parallels
- Purple Shimmer, Blue Shimmer, Green Shimmer, Gold Shimmer, Orange Shimmer, Red Shimmer, Black Shimmer, Aqua Shimmer, Fuchsia Shimmer, Yellow Shimmer
Wave Parallels
- Blue Wave, Green Wave, Gold Wave, Orange Wave, Red Wave, Black Wave, Fuchsia Wave, Aqua Wave, Purple Wave, Yellow Wave, Aqua Pink Vapor Wave
Lava Parallels
- Aqua Lava, Blue Lava, Rose Gold Lava, Gold Lava, Red Lava, Orange Lava, Purple Lava, Fuchsia Lava
Atomic Parallels
- Atomic, Orange Atomic, Red Atomic
Reptilian Parallels
- Green Reptilian, Orange Reptilian, Red Reptilian, Blue Reptilian, Black Reptilian
Mojo Parallels (Mega Box Exclusive)
- Gold Mojo, Orange Mojo, Red Mojo, Black Mojo, Aqua Mojo, Green Mojo, Purple Mojo, Fuchsia Mojo, Yellow Mojo
X-Fractor Parallels
- X-Fractor, Aqua X-Fractor, Yellow X-Fractor, Orange X-Fractor, Red X-Fractor, Black X-Fractor
Mini-Diamond Parallels
- Mini Diamond, Black Mini Diamond, Yellow Mini Diamond, Rose Gold Mini Diamond, Green Mini Diamond
RayWave Parallels
- RayWave, Purple RayWave, Red RayWave
Sapphire Parallels (Special Release)
- Sapphire, Sapphire Blue, Sapphire Orange, Sapphire Red, Sapphire Gold, Sapphire Green, Sapphire Yellow, Padparadscha
Geometric Parallels (2025 Release)
- Fuchsia Geometric, Purple Geometric, Green Geometric, Orange Geometric, Gold Geometric, Blue Geometric, Black Geometric, Red Geometric
Other Rare/Special Parallels
- Speckle, Rose Gold, Canary Diamond, Platinum, Pink, Black, Purple, Blue, Green, Aqua, Yellow, Gold, Orange, Red, Fuchsia, Superfractor
Base
- Base
Intended Use
This model is intended for:
- Collectors identifying card parallels from photos
- Grading/sorting card collections
- Marketplace listings verification
- Educational purposes about Bowman Chrome parallel varieties
Limitations
- Trained specifically on Bowman Chrome prospect cards; may not generalize well to other card brands or sets
- Performance may vary on low-quality or poorly-lit images
- Some visually similar parallels (e.g., certain color variations) may be harder to distinguish
Training Details
- Architecture: CLIP (Vision-Language Model)
- Training Objective: Contrastive Loss
- Evaluation Accuracy: 90.84%
- Downloads last month
- 4
Model tree for hazelbestt/bowman_prospects_classifier
Base model
openai/clip-vit-base-patch32