joheras's picture
Training complete
d381942 verified
---
library_name: transformers
license: mit
base_model: jhu-clsp/mmBERT-base
tags:
- multi_label_classification
- generated_from_trainer
model-index:
- name: finetuned_model_emotion_detection
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_model_emotion_detection
This model is a fine-tuned version of [jhu-clsp/mmBERT-base](https://huggingface.co/jhu-clsp/mmBERT-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3474
- F1 Macro: 0.5055
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 Macro |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 223 | 0.2843 | 0.4052 |
| No log | 2.0 | 446 | 0.2643 | 0.4646 |
| 0.2521 | 3.0 | 669 | 0.3474 | 0.5055 |
### Framework versions
- Transformers 4.57.1
- Pytorch 2.8.0+cu126
- Datasets 4.2.0
- Tokenizers 0.22.1