Fine-Tuning Enhances Existing Mechanisms: A Case Study on Entity Tracking
Paper
•
2402.14811
•
Published
•
4
This model is a fully fine-tuned version of the Llama-7B model on synthetically generated arithmetic tasks. It was introduced in this paper. It is very similar to Goat-7B, except it was trained without LoRA.
For inquiries about checkpoints during the fine-tuning process, kindly reach out to Nikhil via email.
Use the code below to get started with the model.
from transformers import AutoModel
model = AutoModel.from_pretrained("nikhil07prakash/float-7b")
BibTeX:
@inproceedings{prakash2023fine,
title={Fine-Tuning Enhances Existing Mechanisms: A Case Study on Entity Tracking},
author={Prakash, Nikhil and Shaham, Tamar Rott and Haklay, Tal and Belinkov, Yonatan and Bau, David},
booktitle={Proceedings of the 2024 International Conference on Learning Representations},
note={arXiv:2402.14811},
year={2024}
}