After training ๐๐ฆ๐จ๐ฅ๐๐๐ on ๐๐๐ ๐๐๐๐๐ฌ for nearly a month, I've come to realize something most people overlook: ๐ข๐ง๐๐ซ๐๐ฌ๐ญ๐ซ๐ฎ๐๐ญ๐ฎ๐ซ๐ ๐ข๐ฌ ๐ญ๐ก๐ ๐ฆ๐๐ค๐-๐จ๐ซ-๐๐ซ๐๐๐ค ๐๐๐๐ญ๐จ๐ซ ๐ข๐ง ๐๐๐ ๐ญ๐ซ๐๐ข๐ง๐ข๐ง๐ . ๐ฅ
Everyone talks about model architecture and data quality. And yes, those matter immensely. But here's what nobody tells you: when your training run fails at 2 AM because of mysterious ๐๐๐๐ ๐๐ซ๐ซ๐จ๐ซ๐ฌ, or when your expensive GPU cluster is running at ๐๐% ๐๐๐๐ข๐๐ข๐๐ง๐๐ฒ, the problem isn't your model. It's most probably a ๐ฆ๐ข๐ฌ๐ฎ๐ฌ๐ ๐จ๐ ๐ญ๐ก๐ ๐ก๐๐ซ๐๐ฐ๐๐ซ๐. ๐ ๏ธ
Questions that seemed simple but had no clear answers: Why is ๐๐จ๐ ๐ญ๐ซ๐๐ข๐ง๐ข๐ง๐ ๐ฌ๐ฅ๐จ๐ฐ๐๐ซ ๐ญ๐ก๐๐ง ๐๐๐ง๐ฌ๐ ๐ฆ๐จ๐๐๐ฅ๐ฌ? Which ๐๐๐๐ ๐๐ฅ๐๐ ๐ฌ should we actually set? How often should we checkpoint without killing throughput?
That's why we built ๐๐ก๐ ๐๐ฆ๐จ๐ฅ ๐๐ซ๐๐ข๐ง๐ข๐ง๐ ๐๐ฅ๐๐ฒ๐๐จ๐จ๐ค ๐: a complete guide covering everything from model architecture and data curation to the SmolLM3 training marathon, post-training techniques, and crucially, the ๐ข๐ง๐๐ซ๐๐ฌ๐ญ๐ซ๐ฎ๐๐ญ๐ฎ๐ซ๐ ๐ฅ๐๐ฒ๐๐ซ that most teams get wrong.
We validated real vs theoretical bandwidth across the entire stack: ๐๐๐๐ ๐ก๐ข๐ญ๐ญ๐ข๐ง๐ ๐ ๐๐/๐ฌ, ๐๐๐๐ข๐ง๐ค ๐.๐ ๐ซ๐๐๐๐ก๐ข๐ง๐ ๐๐๐ ๐๐/๐ฌ, ๐๐๐๐ ๐๐๐ง๐ ๐๐ญ ๐๐.๐ ๐๐/๐ฌ. Then we ran collective operations across ๐๐๐ ๐๐๐๐ฌ (16 nodes, 8xH100s each) and measured how performance degrades at scale: all-reduce drops from ๐๐๐ ๐๐/๐ฌ on a single node to ๐๐๐-๐๐๐ ๐๐/๐ฌ across 16 nodes.
If you've ever wondered why your training runs are slower than they should be, or you're planning to scale up and want to avoid expensive mistakes, this guide might save you weeks of debugging.
If you've followed the progress of robotics in the past 18 months, you've likely noticed how robotics is increasingly becoming the next frontier that AI will unlock.
At Hugging Faceโin robotics and across all AI fieldsโwe believe in a future where AI and robots are open-source, transparent, and affordable; community-built and safe; hackable and fun. We've had so much mutual understanding and passion working with the Pollen Robotics team over the past year that we decided to join forces!
You can already find our open-source humanoid robot platform Reachy 2 on the Pollen website and the Pollen community and people here on the hub at
The new DeepSite space is really insane for vibe-coders enzostvs/deepsite
With the wave of vibe-coding-optimized LLMs like the latest open-source DeepSeek model (version V3-0324), you can basically prompt out-of-the-box and create any app and game in one-shot.
It feels so powerful to me, no more complex framework or under-the-hood prompt engineering to have a working text-to-app tool.
AI is eating the world and *open-source* AI is eating AI itself!
PS: and even more meta is that the DeepSite app and DeepSeek model are both fully open-source code => time to start recursively improve?
PPS: you still need some inference hosting unless you're running the 600B param model at home, so check the very nice list of HF Inference Providers for this model: deepseek-ai/DeepSeek-V3-0324
It's beating Claude 3.7 on (competitive) programming โa domain Anthropic has been historically really strong atโ and it's getting close to o1-mini/R1 on olympiad level coding with just 7B parameters!
And the best part is that we're open-sourcing all about its training dataset, the new IOI benchmark, and more in our Open-R1 progress report #3: https://huggingface.co/blog/open-r1/update-3
SmolVLM-2 and SigLIP-2 are now part of transformers in dedicated releases!
They're added on top of the v4.49.0 release, and can be installed from the following tags: v4.49.0-SmolVLM-2 and v4.49.0-SigLIP-2.
This marks a new beginning for the release process of transformers. For the past five years, we've been doing monthly releases featuring many models (v4.49.0, the latest release, features 9 new architectures).
Starting with SmolVLM-2 & SigLIP2, we'll now additionally release tags supporting new models on a stable branch. These models are therefore directly available for use by installing from the tag itself. These tags will continue to be updated with fixes applied to these models.
Going forward, continue expecting software releases following semantic versioning: v4.50.0 will have ~10 new architectures compared to v4.49.0, as well as a myriad of new features, improvements and bug fixes. Accompanying these software releases, we'll release tags offering brand new models as fast as possible, to make them accessible to all immediately.
We applied the same data-driven approach that led to SOTA English performance in๐ท FineWeb to thousands of languages.
๐ฅ FineWeb2 has 8TB of compressed text data and outperforms other multilingual datasets in our experiments.
The dataset is released under the permissive ๐ ODC-By 1.0 license, and the ๐ป code to reproduce it and our evaluations is public.
We will very soon announce a big community project, and are working on a ๐ blogpost walking you through the entire dataset creation process. Stay tuned!