SylReg
Collection
18 items
•
Updated
Use the code below to get started with the model.
git clone https://github.com/ryota-komatsu/speaker_disentangled_hubert.git
cd speaker_disentangled_hubert
sudo apt install git-lfs # for UTMOS
conda create -y -n py310 -c pytorch -c nvidia -c conda-forge python=3.10.19 pip=24.0 faiss-gpu=1.12.0
conda activate py310
pip install -r requirements/requirements.txt
sh scripts/setup.sh
import re
import torch
import torchaudio
from transformers import AutoModelForCausalLM, AutoTokenizer
from src.flow_matching import FlowMatchingWithBigVGan
from src.s5hubert.models.sylreg import SylRegForSyllableDiscovery
wav_path = "/path/to/wav"
# download pretrained models from hugging face hub
encoder = SylRegForSyllableDiscovery.from_pretrained("ryota-komatsu/SylReg-Distill", device_map="cuda")
decoder = FlowMatchingWithBigVGan.from_pretrained("ryota-komatsu/SylReg-Decoder-Base", device_map="cuda")
# load a waveform
waveform, sr = torchaudio.load(wav_path)
waveform = torchaudio.functional.resample(waveform, sr, 16000)
# encode a waveform into syllabic units
outputs = encoder(waveform.to(encoder.device))
units = outputs[0]["units"] # [3950, 67, ..., 503]
# unit-to-speech synthesis
generated_speech = decoder(units.unsqueeze(0)).waveform.cpu()
| License | Provider | |
|---|---|---|
| LibriTTS-R | CC BY 4.0 | Y. Koizumi et al. |
2 x A6000