XL-DURel: Finetuning Sentence Transformers for Ordinal Word-in-Context Classification
Paper
•
2507.14578
•
Published
This model is an extended variant of XL-DURel.
It has been trained using the Ordinal WiC dataset (training and test splits), as introduced in the paper:
XL-DURel: Finetuning Sentence Transformers for Ordinal Word-in-Context Classification.
pip install -U sentence-transformers
Then you can use the model like this:
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('{MODEL_NAME}')
embeddings = model.encode(sentences)
print(embeddings)
The model was trained with the parameters:
DataLoader:
torch.utils.data.dataloader.DataLoader of length 10049 with parameters:
{'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
Loss:
sentence_transformers.losses.AnglELoss.AnglELoss with parameters:
{'scale': 20.0, 'similarity_fct': 'pairwise_angle_sim'}
Parameters of the fit()-Method:
{
"epochs": 10,
"evaluation_steps": 2512,
"evaluator": "WordTransformer.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
"max_grad_norm": 1,
"optimizer_class": "<class 'transformers.optimization.AdamW'>",
"optimizer_params": {
"lr": 1e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": null,
"warmup_steps": 10049,
"weight_decay": 0.0
}
WordTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
@misc{yadav2025xldurelfinetuningsentencetransformers,
title={XL-DURel: Finetuning Sentence Transformers for Ordinal Word-in-Context Classification},
author={Sachin Yadav and Dominik Schlechtweg},
year={2025},
eprint={2507.14578},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2507.14578},
}