Spaces:
Runtime error
Runtime error
Update main.py
Browse files
main.py
CHANGED
|
@@ -7,6 +7,10 @@ from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
|
| 7 |
from huggingface_hub import InferenceClient
|
| 8 |
from transformers import AutoTokenizer, AutoModel
|
| 9 |
from deep_translator import GoogleTranslator
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
|
| 12 |
# Ensure HF_TOKEN is set
|
|
@@ -31,14 +35,14 @@ llm_client = InferenceClient(
|
|
| 31 |
# generate_kwargs={"temperature": 0.1},
|
| 32 |
# )
|
| 33 |
# Configure Llama index settings with the new model
|
| 34 |
-
Settings.llm = HuggingFaceInferenceAPI(
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
)
|
| 42 |
# Settings.embed_model = HuggingFaceEmbedding(
|
| 43 |
# model_name="BAAI/bge-small-en-v1.5"
|
| 44 |
# )
|
|
@@ -46,17 +50,35 @@ Settings.llm = HuggingFaceInferenceAPI(
|
|
| 46 |
# Settings.embed_model = HuggingFaceEmbedding(
|
| 47 |
# model_name="xlm-roberta-base" # XLM-RoBERTa model for multilingual support
|
| 48 |
# )
|
| 49 |
-
Settings.embed_model = HuggingFaceEmbedding(
|
| 50 |
-
|
| 51 |
-
)
|
| 52 |
|
| 53 |
# # Configure tokenizer and model if required
|
| 54 |
# tokenizer = AutoTokenizer.from_pretrained("xlm-roberta-base")
|
| 55 |
# model = AutoModel.from_pretrained("xlm-roberta-base")
|
| 56 |
# Configure tokenizer and model if required
|
| 57 |
tokenizer = AutoTokenizer.from_pretrained(repo_id) # Use the tokenizer from the new model
|
| 58 |
-
model = AutoModel.from_pretrained(repo_id) # Load the new model
|
| 59 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
PERSIST_DIR = "db"
|
| 61 |
PDF_DIRECTORY = 'data'
|
| 62 |
|
|
|
|
| 7 |
from huggingface_hub import InferenceClient
|
| 8 |
from transformers import AutoTokenizer, AutoModel
|
| 9 |
from deep_translator import GoogleTranslator
|
| 10 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 11 |
+
import torch
|
| 12 |
+
from accelerate import infer_auto_device_map
|
| 13 |
+
|
| 14 |
|
| 15 |
|
| 16 |
# Ensure HF_TOKEN is set
|
|
|
|
| 35 |
# generate_kwargs={"temperature": 0.1},
|
| 36 |
# )
|
| 37 |
# Configure Llama index settings with the new model
|
| 38 |
+
# Settings.llm = HuggingFaceInferenceAPI(
|
| 39 |
+
# model_name=repo_id,
|
| 40 |
+
# tokenizer_name=repo_id, # Use the same tokenizer as the model
|
| 41 |
+
# context_window=3000,
|
| 42 |
+
# token=HF_TOKEN,
|
| 43 |
+
# max_new_tokens=512,
|
| 44 |
+
# generate_kwargs={"temperature": 0.1},
|
| 45 |
+
# )
|
| 46 |
# Settings.embed_model = HuggingFaceEmbedding(
|
| 47 |
# model_name="BAAI/bge-small-en-v1.5"
|
| 48 |
# )
|
|
|
|
| 50 |
# Settings.embed_model = HuggingFaceEmbedding(
|
| 51 |
# model_name="xlm-roberta-base" # XLM-RoBERTa model for multilingual support
|
| 52 |
# )
|
| 53 |
+
# Settings.embed_model = HuggingFaceEmbedding(
|
| 54 |
+
# model_name="sentence-transformers/paraphrase-multilingual-mpnet-base-v2"
|
| 55 |
+
# )
|
| 56 |
|
| 57 |
# # Configure tokenizer and model if required
|
| 58 |
# tokenizer = AutoTokenizer.from_pretrained("xlm-roberta-base")
|
| 59 |
# model = AutoModel.from_pretrained("xlm-roberta-base")
|
| 60 |
# Configure tokenizer and model if required
|
| 61 |
tokenizer = AutoTokenizer.from_pretrained(repo_id) # Use the tokenizer from the new model
|
| 62 |
+
# model = AutoModel.from_pretrained(repo_id) # Load the new model
|
| 63 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 64 |
+
repo_id,
|
| 65 |
+
load_in_4bit=True, # Load in 4-bit quantization
|
| 66 |
+
torch_dtype=torch.float16,
|
| 67 |
+
device_map="auto",
|
| 68 |
+
)
|
| 69 |
+
# Configure Llama index settings
|
| 70 |
+
Settings.llm = HuggingFaceInferenceAPI(
|
| 71 |
+
model_name=repo_id,
|
| 72 |
+
tokenizer_name=repo_id, # Use the same tokenizer as the model
|
| 73 |
+
context_window=2048, # Reduce context window to save memory
|
| 74 |
+
token=HF_TOKEN,
|
| 75 |
+
max_new_tokens=256, # Reduce max tokens to save memory
|
| 76 |
+
generate_kwargs={"temperature": 0.1},
|
| 77 |
+
)
|
| 78 |
+
# Use a smaller embedding model
|
| 79 |
+
Settings.embed_model = HuggingFaceEmbedding(
|
| 80 |
+
model_name="sentence-transformers/all-MiniLM-L6-v2" # Smaller and faster
|
| 81 |
+
)
|
| 82 |
PERSIST_DIR = "db"
|
| 83 |
PDF_DIRECTORY = 'data'
|
| 84 |
|