File size: 5,860 Bytes
44db095
95b8024
44db095
27f9fcd
44db095
95b8024
44db095
 
 
84883ea
44db095
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13a1290
 
 
 
 
 
 
 
 
 
 
 
 
44db095
d4bae5a
 
 
 
 
44db095
 
44d54f5
 
 
 
 
44db095
 
 
 
44d54f5
 
 
a82a2ae
44d54f5
44db095
44d54f5
2766639
44db095
 
 
e7d2c96
84883ea
 
 
 
 
 
95adb4e
44d54f5
84883ea
 
d4db00e
95adb4e
 
44db095
44d54f5
44db095
 
84883ea
44db095
 
 
 
 
 
d4db00e
44db095
 
 
 
 
 
 
d4db00e
44db095
95b8024
44db095
84883ea
44db095
ea16ad3
 
 
 
 
 
 
 
 
84883ea
ea16ad3
 
13a1290
 
84883ea
 
13a1290
 
ea16ad3
84883ea
13a1290
44db095
84883ea
13a1290
 
84883ea
13a1290
 
 
 
59daa60
13a1290
59daa60
13a1290
 
44db095
13a1290
59daa60
84883ea
44db095
2766639
84883ea
 
 
95b8024
84883ea
44db095
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import os
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import numpy as np
import re

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# ---------------------------
# ModernBERT Models (SzegedAI)
# ---------------------------
model1_path = "modernbert.bin"
model2_path = "https://huggingface.co/mihalykiss/modernbert_2/resolve/main/Model_groups_3class_seed12"
model3_path = "https://huggingface.co/mihalykiss/modernbert_2/resolve/main/Model_groups_3class_seed22"

tokenizer_modernbert = AutoTokenizer.from_pretrained("answerdotai/ModernBERT-base")

model_1 = AutoModelForSequenceClassification.from_pretrained("answerdotai/ModernBERT-base", num_labels=41)
model_1.load_state_dict(torch.load(model1_path, map_location=device))
model_1.to(device).eval()

model_2 = AutoModelForSequenceClassification.from_pretrained("answerdotai/ModernBERT-base", num_labels=41)
model_2.load_state_dict(torch.hub.load_state_dict_from_url(model2_path, map_location=device))
model_2.to(device).eval()

model_3 = AutoModelForSequenceClassification.from_pretrained("answerdotai/ModernBERT-base", num_labels=41)
model_3.load_state_dict(torch.hub.load_state_dict_from_url(model3_path, map_location=device))
model_3.to(device).eval()

label_mapping = {
    0: '13B', 1: '30B', 2: '65B', 3: '7B', 4: 'GLM130B', 5: 'bloom_7b',
    6: 'bloomz', 7: 'cohere', 8: 'davinci', 9: 'dolly', 10: 'dolly-v2-12b',
    11: 'flan_t5_base', 12: 'flan_t5_large', 13: 'flan_t5_small',
    14: 'flan_t5_xl', 15: 'flan_t5_xxl', 16: 'gemma-7b-it', 17: 'gemma2-9b-it',
    18: 'gpt-3.5-turbo', 19: 'gpt-35', 20: 'gpt4', 21: 'gpt4o',
    22: 'gpt_j', 23: 'gpt_neox', 24: 'human', 25: 'llama3-70b', 26: 'llama3-8b',
    27: 'mixtral-8x7b', 28: 'opt_1.3b', 29: 'opt_125m', 30: 'opt_13b',
    31: 'opt_2.7b', 32: 'opt_30b', 33: 'opt_350m', 34: 'opt_6.7b',
    35: 'opt_iml_30b', 36: 'opt_iml_max_1.3b', 37: 't0_11b', 38: 't0_3b',
    39: 'text-davinci-002', 40: 'text-davinci-003'
}

def clean_text(text: str) -> str:
    """Normalize text for ModernBERT"""
    text = text.replace("\xa0", " ").replace("\u200b", "")
    text = re.sub(r"\s{2,}", " ", text)
    text = re.sub(r"\s+([,.;:?!])", r"\1", text)
    return text.strip()

def classify_szegedai(text: str):
    """
    ModernBERT ensemble detector with:
    - Human label boost
    - Short text handling (<30 words ignored)
    """
    cleaned_text = clean_text(text)
    if not cleaned_text.strip():
        return {"error": "Empty text"}

    word_count = len(cleaned_text.split())
    if word_count < 30:
        # For very short texts, skip AI classification and assume mostly human
        return {"Please Enter at least 30 words"}

    inputs = tokenizer_modernbert(cleaned_text, return_tensors="pt", truncation=True, padding=True).to(device)
    
    with torch.no_grad():
        logits_1 = model_1(**inputs).logits
        logits_2 = model_2(**inputs).logits
        logits_3 = model_3(**inputs).logits

        probs1 = torch.softmax(logits_1, dim=1)
        probs2 = torch.softmax(logits_2, dim=1)
        probs3 = torch.softmax(logits_3, dim=1)

        human_index = 24
        for p in [probs1, probs2, probs3]:
            p[:, human_index] *= 2.0  # Boost human label
            p = p / p.sum(dim=1, keepdim=True)  # Re-normalize

        probs = (probs1 + probs2 + probs3) / 3

    human_prob = probs[0][human_index].item() * 100
    ai_prob = 100 - human_prob

    return {"Human Probability": round(human_prob, 2), "AI Probability": round(ai_prob, 2)}

# ---------------------------
# HuggingFace other models
# ---------------------------
MODELS = {
    "MonkeyDAnh": "MonkeyDAnh/my-awesome-ai-detector-roberta-base-v4-human-vs-machine-finetune",
}

def run_hf_model(model_id, text):
    try:
        tokenizer = AutoTokenizer.from_pretrained(model_id)
        model = AutoModelForSequenceClassification.from_pretrained(model_id)
        inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
        with torch.no_grad():
            logits = model(**inputs).logits
        probs = torch.softmax(logits, dim=-1).cpu().numpy()[0]
        return {"Human Probability": float(probs[0]*100), "AI Probability": float(probs[1]*100)}
    except Exception as e:
        return {"error": str(e)}

# ---------------------------
# Verdict logic
# ---------------------------
def verdict(ai_prob):
    if ai_prob < 20:
        return "Most likely human-written."
    elif 20 <= ai_prob < 40:
        return "Possibly human-written with minimal AI assistance."
    elif 40 <= ai_prob < 60:
        return "Unclear – could be either human or AI-assisted."
    elif 60 <= ai_prob < 80:
        return "Possibly AI-generated, or a human using AI assistance."
    else:
        return "Likely AI-generated or heavily AI-assisted."

def detect_text(text):
    results = {}

    # Run other HuggingFace detectors
    for name, model_id in MODELS.items():
        results[name] = run_hf_model(model_id, text)

    # Run ModernBERT ensemble
    results["SzegedAI Detector"] = classify_szegedai(text)

    # Compute average AI probability
    ai_probs = []
    strong_ai_detector = None
    for v in results.values():
        if "AI Probability" in v:
            ai_probs.append(v["AI Probability"])
            if v["AI Probability"] > 90:   # strong AI flag
                strong_ai_detector = v

    avg_ai = np.mean(ai_probs) if ai_probs else 0

    if strong_ai_detector:
        final_verdict = verdict(strong_ai_detector["AI Probability"])
    else:
        final_verdict = verdict(avg_ai)

    results["Final Score"] = {"Verdict": final_verdict}
    return results

# ---------------------------
# Test Example
# ---------------------------
if __name__ == "__main__":
    sample = "This is a test sentence written by a human."
    print(detect_text(sample))