Improve model card with metadata, paper link, and usage example

#1
by nielsr HF Staff - opened
Files changed (1) hide show
  1. README.md +84 -1
README.md CHANGED
@@ -1 +1,84 @@
1
- Github: https://github.com/thanhdath/grast-sql
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ pipeline_tag: text-ranking
3
+ library_name: transformers
4
+ ---
5
+
6
+ # GRAST-SQL: Scaling Text-to-SQL via LLM-efficient Schema Filtering with Functional Dependency Graph Rerankers
7
+
8
+ GRAST-SQL is a lightweight, open-source schema-filtering framework that scales Text-to-SQL to real-world, very wide schemas by compacting prompts without sacrificing accuracy. It ranks columns with a query-aware LLM encoder enriched by values/metadata, reranks them via a graph transformer over a functional-dependency (FD) graph to capture inter-column structure, and then guarantees joinability with a Steiner-tree spanner to produce a small, connected sub-schema. Across Spider, BIRD, and Spider-2.0-lite, GRAST-SQL delivers near-perfect recall with substantially higher precision than CodeS, SchemaExP, Qwen rerankers, and embedding retrievers, maintains sub-second median latency on typical databases, scales to 23K+ columns, and cuts prompt tokens by up to 50% in end-to-end systems—often with slight accuracy gains—all while using compact models.
9
+
10
+ This model was presented in the paper [Scaling Text2SQL via LLM-efficient Schema Filtering with Functional Dependency Graph Rerankers](https://huggingface.co/papers/2512.16083).
11
+
12
+ Code: https://github.com/thanhdath/grast-sql
13
+
14
+ ## System flow
15
+ ![GRAST-SQL main flow](https://github.com/thanhdath/grast-sql/raw/main/figures/main-flow.png)
16
+
17
+ ### Datasets
18
+ - **Spider**: [Spider Evaluation Dataset](https://huggingface.co/datasets/griffith-bigdata/GRAST-SQL-Spider)
19
+ - **BIRD**: [BIRD Training/Evaluation Dataset](https://huggingface.co/datasets/griffith-bigdata/GRAST-SQL-BIRD)
20
+ - **Spider-2.0-lite**: [Spider 2.0-lite Eval Dataset](https://huggingface.co/datasets/griffith-bigdata/GRAST-SQL-Spider2.0-lite)
21
+
22
+ ### Models
23
+ - **GRAST-SQL 0.6B**: [GRAST-SQL 0.6B BIRD](https://huggingface.co/griffith-bigdata/GRAST-SQL-0.6B-BIRD-Reranker)
24
+ - **GRAST-SQL 4B**: [GRAST-SQL 4B BIRD](https://huggingface.co/griffith-bigdata/GRAST-SQL-4B-BIRD-Reranker)
25
+ - **GRAST-SQL 8B**: [GRAST-SQL 8B BIRD](https://huggingface.co/griffith-bigdata/GRAST-SQL-8B-BIRD-Reranker)
26
+
27
+ More models can be found in [Huggingface collection](https://huggingface.co/collections/griffith-bigdata/grast-sql)
28
+
29
+ ## Sample Usage
30
+
31
+ To apply GRAST-SQL to your own database, follow these two simple steps:
32
+
33
+ ### Step 1: Initialize (ONE-TIME per database) - Functional Dependency Graph Construction & Metadata Completion
34
+
35
+ Extract schema information, generate table/column meanings, predict missing keys, and build the functional dependency graph:
36
+
37
+ ```bash
38
+ python init_schema.py \
39
+ --db-path /home/datht/mats/data/spider/database/concert_singer/concert_singer.sqlite \
40
+ --output concert_singer.pkl \
41
+ --model gpt-4.1-mini
42
+ ```
43
+
44
+ **Arguments:**
45
+ - `--db-path`: Path to your SQLite database file (required)
46
+ - `--output`: Output path for the graph pickle file (default: `schema_graph.pkl`)
47
+ - `--model`: OpenAI model to use for meaning generation and key prediction (default: `gpt-4.1-mini`)
48
+
49
+ **Note:** Make sure your OpenAI API key is set in `.env`.
50
+
51
+ ### Step 2: Filter Top-K Columns
52
+
53
+ Use the GRAST-SQL model to filter the most relevant columns for a given question:
54
+
55
+ ```bash
56
+ python filter_columns.py \
57
+ --graph concert_singer.pkl \
58
+ --question "Show name, country, age for all singers ordered by age from the oldest to the youngest." \
59
+ --top-k 5
60
+ ```
61
+
62
+ **Arguments:**
63
+ - `--graph`: Path to the graph pickle file from Step 1 (required)
64
+ - `--question`: Natural language question about the database (required)
65
+ - `--top-k`: Number of top columns to retrieve (default: 10)
66
+ - `--checkpoint`: Path to GNN checkpoint (default: `griffith-bigdata/GRAST-SQL-0.6B-BIRD-Reranker/layer-3-hidden-2048.pt`)
67
+ - `--encoder-path`: Path to encoder model (default: `griffith-bigdata/GRAST-SQL-0.6B-BIRD-Reranker`)
68
+ - `--max-length`: Maximum sequence length (default: 4096)
69
+ - `--batch-size`: Batch size for embedding generation (default: 32)
70
+ - `--hidden-dim`: Hidden dimension for GNN (default: 2048)
71
+ - `--num-layers`: Number of GNN layers (default: 3)
72
+
73
+ ## Citation
74
+ ```bibtex
75
+ @misc{hoang2025scalingtext2sqlllmefficientschema,
76
+ title={Scaling Text2SQL via LLM-efficient Schema Filtering with Functional Dependency Graph Rerankers},
77
+ author={Thanh Dat Hoang and Thanh Tam Nguyen and Thanh Trung Huynh and Hongzhi Yin and Quoc Viet Hung Nguyen},
78
+ year={2025},
79
+ eprint={2512.16083},
80
+ archivePrefix={arXiv},
81
+ primaryClass={cs.DB},
82
+ url={https://arxiv.org/abs/2512.16083},
83
+ }
84
+ ```